The influence of earthquake forces on ultimate bearing capacity of foundations on sloping ground was studied. A solution to seismic ultimate bearing capacity of strip footings on slope was obtained by utilizing pseudo...The influence of earthquake forces on ultimate bearing capacity of foundations on sloping ground was studied. A solution to seismic ultimate bearing capacity of strip footings on slope was obtained by utilizing pseudo-static analysis method and taking the effect of intermediate principal stress into consideration. Based on limit equilibrium theory, the formulae for computing static bearing capacity factors, Nq, Nc, Nγ, and dynamic bearing capacity factors, Nqd, Ned, Nγd, which are associated with surcharge, cohesion and self-weight of soils respectively, were presented. A great number of analysis calculations were carried out to obtain the relationship curves of the static and dynamic bearing capacity factors versus various calculation parameters. The curves can serve as the practical engineering design. The calculation results also show that when the values of horizontal and vertical seismic coefficients are 0.2, the dynamic bearing capacity factors Nqd, Ned and Nγd, in which the effects of intermediate principal stress are taken into consideration, increase by 4%-42%, 3%-27% and 34%-57%, respectively.展开更多
基金Project (05GK3024) supported by the Program of Hunan Provincial Science and Technology
文摘The influence of earthquake forces on ultimate bearing capacity of foundations on sloping ground was studied. A solution to seismic ultimate bearing capacity of strip footings on slope was obtained by utilizing pseudo-static analysis method and taking the effect of intermediate principal stress into consideration. Based on limit equilibrium theory, the formulae for computing static bearing capacity factors, Nq, Nc, Nγ, and dynamic bearing capacity factors, Nqd, Ned, Nγd, which are associated with surcharge, cohesion and self-weight of soils respectively, were presented. A great number of analysis calculations were carried out to obtain the relationship curves of the static and dynamic bearing capacity factors versus various calculation parameters. The curves can serve as the practical engineering design. The calculation results also show that when the values of horizontal and vertical seismic coefficients are 0.2, the dynamic bearing capacity factors Nqd, Ned and Nγd, in which the effects of intermediate principal stress are taken into consideration, increase by 4%-42%, 3%-27% and 34%-57%, respectively.