In order to understand the electric interfacial behavior, mean field based electric double layer (EDL) theory has been continuously developed over the past 150 years. In this article, we briefly review the developme...In order to understand the electric interfacial behavior, mean field based electric double layer (EDL) theory has been continuously developed over the past 150 years. In this article, we briefly review the development of the EDL model, from the dimensionless Gouy-Chapman model to the symmetric Bikerman-Freise model, and finally toward size-asymmetric mean field theory models. We provide the general derivations within the framework of Helmholtz free energy of the lattice- gas model, and it can be seen that the above-mentioned models are consistent in the sense that the interconversi0n among them can be achieved by reducing the basic assumptions.展开更多
Segmentation of layers in retinal images obtained by optical coherence tomography(OCT)has become an important clinical tool to diagnose ophthalmic diseases.However,due to the sus-ceptibility to speckle noise and shado...Segmentation of layers in retinal images obtained by optical coherence tomography(OCT)has become an important clinical tool to diagnose ophthalmic diseases.However,due to the sus-ceptibility to speckle noise and shadow of blood vessels etc.,the layer segmentation technology based on a single image still fail to reach a satisfactory level.We propose a combination method of structure interpolation and lateral mean filtering(SI-LMF)to improve the signal-to-noise ratio based on one retinal image.Before performing one-dimensional lateral mean filtering to remove noise,structure interpolation was operated to eliminate thickness fluctuations.Then,we used boundary growth method to identify boundaries.Compared with existing segmentations,the method proposed in this paper requires less data and avoids the influence of microsaccade.The automatic segmentation method was verified on the spectral domain OCT volume images obtained from four normal objects,which successfully identified the boundaries of 10 physio-logical layers,consistent with the results based on the manual determination.展开更多
In extreme cold regions,a thermal insulation layer(TIL)is commonly employed to mitigate the detrimental effects of frost heaving forces in tunnels.Optimizing the laying scheme of TIL,specifically minimizing frost heav...In extreme cold regions,a thermal insulation layer(TIL)is commonly employed to mitigate the detrimental effects of frost heaving forces in tunnels.Optimizing the laying scheme of TIL,specifically minimizing frost heaving forces,holds considerable importance in the prevention of frost damage.This research developed a two-dimensional unsteady temperature field of circular tunnels by using the difference method(taking the off-wall laying method as an example)based on the law of conservation of energy.Then,the frozen circle and water migration coefficient were introduced to establish the relationship between the temperature field and frost heaving forces,and a reliable methodology for calculating these forces under the specific conditions of TIL installation was developed.Then(i)the influence of the air layer thickness of the off-wall laying method,(ii)different laying methods of TIL,(iii)the TIL thickness,(iv)the thermal conductivity of the TIL,and(v)the freeze-thaw cycles on the frost heaving force were investigated.The results showed that the frost heaving force served as a reliable and effective metric for evaluating the insulation effect in tunnels.In order to avoid frost damage in compliance with the design requirements,the insulation effects from various laying methods were established,in descending efficacy order as follows:off-wall laying,double layer laying,surface laying,and sandwich laying.Our findings revealed that the optimal thickness for the air layer in the offwall laying method was 0.10 m.The insulation effect of materials with a thermal conductivity below 0.047 W/(m·℃)was furthermore found to be good.Under freeze-thaw cycle conditions,it is concluded that to prevent frost damage,the TIL thickness should be the sum of the thickness r1 of the first freeze-thaw cycle without frost heaving forces and an additional reserve value 0.06r1 of the TIL thickness.展开更多
This paper presents a graphical procedure for the squaring of a circle of any radius. This procedure, which is based on a novel application of the involute profile, when applied to a circle of arbitrary radius (using ...This paper presents a graphical procedure for the squaring of a circle of any radius. This procedure, which is based on a novel application of the involute profile, when applied to a circle of arbitrary radius (using only an unmarked ruler and a compass), produced a square equal in area to the given circle, which is 50 cm<sup>2</sup>. This result was a clear demonstration that not only is the construction valid for the squaring of a circle of any radius, but it is also capable of achieving absolute results (independent of the number pi (π), in a finite number of steps), when carried out with precision.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.21421001,21373118,and 21203100)the Natural Science Foundation of Tianjin,China(Grant No.13JCQNJC06700)+1 种基金the MOE Innovation Team of China(Grant No.IRT13022)NFFTBS(Grant No.J1103306)
文摘In order to understand the electric interfacial behavior, mean field based electric double layer (EDL) theory has been continuously developed over the past 150 years. In this article, we briefly review the development of the EDL model, from the dimensionless Gouy-Chapman model to the symmetric Bikerman-Freise model, and finally toward size-asymmetric mean field theory models. We provide the general derivations within the framework of Helmholtz free energy of the lattice- gas model, and it can be seen that the above-mentioned models are consistent in the sense that the interconversi0n among them can be achieved by reducing the basic assumptions.
基金This work was supported in part by National Natural Science Foundation of China(61771119 and 61901100)Hebei Provincial Natural Science Foundation of China(H2018501087 and H2019501010)Fundamental Research Funds for the Central Universities(N182304008).
文摘Segmentation of layers in retinal images obtained by optical coherence tomography(OCT)has become an important clinical tool to diagnose ophthalmic diseases.However,due to the sus-ceptibility to speckle noise and shadow of blood vessels etc.,the layer segmentation technology based on a single image still fail to reach a satisfactory level.We propose a combination method of structure interpolation and lateral mean filtering(SI-LMF)to improve the signal-to-noise ratio based on one retinal image.Before performing one-dimensional lateral mean filtering to remove noise,structure interpolation was operated to eliminate thickness fluctuations.Then,we used boundary growth method to identify boundaries.Compared with existing segmentations,the method proposed in this paper requires less data and avoids the influence of microsaccade.The automatic segmentation method was verified on the spectral domain OCT volume images obtained from four normal objects,which successfully identified the boundaries of 10 physio-logical layers,consistent with the results based on the manual determination.
基金the financial support provided by the National Natural Science Foundation of China(Nos.52078061,51878074)the Huaihua University Scientific Research Project,China(No.HHUY 2022-26)+1 种基金the Postgraduate Research and Innovation-funded Project of Hunan Province,China(No.CX20220885)。
文摘In extreme cold regions,a thermal insulation layer(TIL)is commonly employed to mitigate the detrimental effects of frost heaving forces in tunnels.Optimizing the laying scheme of TIL,specifically minimizing frost heaving forces,holds considerable importance in the prevention of frost damage.This research developed a two-dimensional unsteady temperature field of circular tunnels by using the difference method(taking the off-wall laying method as an example)based on the law of conservation of energy.Then,the frozen circle and water migration coefficient were introduced to establish the relationship between the temperature field and frost heaving forces,and a reliable methodology for calculating these forces under the specific conditions of TIL installation was developed.Then(i)the influence of the air layer thickness of the off-wall laying method,(ii)different laying methods of TIL,(iii)the TIL thickness,(iv)the thermal conductivity of the TIL,and(v)the freeze-thaw cycles on the frost heaving force were investigated.The results showed that the frost heaving force served as a reliable and effective metric for evaluating the insulation effect in tunnels.In order to avoid frost damage in compliance with the design requirements,the insulation effects from various laying methods were established,in descending efficacy order as follows:off-wall laying,double layer laying,surface laying,and sandwich laying.Our findings revealed that the optimal thickness for the air layer in the offwall laying method was 0.10 m.The insulation effect of materials with a thermal conductivity below 0.047 W/(m·℃)was furthermore found to be good.Under freeze-thaw cycle conditions,it is concluded that to prevent frost damage,the TIL thickness should be the sum of the thickness r1 of the first freeze-thaw cycle without frost heaving forces and an additional reserve value 0.06r1 of the TIL thickness.
文摘This paper presents a graphical procedure for the squaring of a circle of any radius. This procedure, which is based on a novel application of the involute profile, when applied to a circle of arbitrary radius (using only an unmarked ruler and a compass), produced a square equal in area to the given circle, which is 50 cm<sup>2</sup>. This result was a clear demonstration that not only is the construction valid for the squaring of a circle of any radius, but it is also capable of achieving absolute results (independent of the number pi (π), in a finite number of steps), when carried out with precision.