In two previous papers <a href="#ref1">[1]</a> and <a href="#ref2">[2]</a>, a structure for vector products in <em>n</em> dimensions was presented, and at the sa...In two previous papers <a href="#ref1">[1]</a> and <a href="#ref2">[2]</a>, a structure for vector products in <em>n</em> dimensions was presented, and at the same time it was possible to propose the existence of a vector analogous to the curl of a vector field, for a space of four dimensions. In continuation of these works, the objective is to develop, through dimensional analogy, the idea of a hypothetical vector field, associated with the classical electromagnetic wave. This hypothetical field has a possible mathematical existence only when considering a space of four dimensions. The properties of the electromagnetic wave are preserved and equations with mathematical forms analogous to those of Maxwell’s equations are presented.展开更多
We propose that quantum entanglement occurs because the fundamental particles, such as electrons, quarks, and photons, simultaneously experience both the 4th real spatial dimension in R<sup>4</sup> as well...We propose that quantum entanglement occurs because the fundamental particles, such as electrons, quarks, and photons, simultaneously experience both the 4th real spatial dimension in R<sup>4</sup> as well as the time dimension in (3 + 1)-D spacetime. Consequently, the entangled particles can never become separated in the 4th spatial dimension no matter how far they have moved apart in the other 3 spatial dimensions. Because the quark and lepton families represent specific different discrete symmetry binary subgroups of SU(2), we can establish that the quantum states of the fundamental particles are defined in 4 spatial dimensions, so there is then no need for a spacetime communication from one detector (or particle) to inform the other detector (or particle) of the physical state of the first detected entangled particle. A clever experiment needs to determine whether the fundamental particles actually experience a 4th spatial dimension, and if so, whether they experience the 4th spatial dimension as the time dimension simultaneously. Apparently, if a Casimir-like test reveals that virtual particles have a non-zero mass, there are claims that a 4th spatial dimension does not exist.展开更多
文摘In two previous papers <a href="#ref1">[1]</a> and <a href="#ref2">[2]</a>, a structure for vector products in <em>n</em> dimensions was presented, and at the same time it was possible to propose the existence of a vector analogous to the curl of a vector field, for a space of four dimensions. In continuation of these works, the objective is to develop, through dimensional analogy, the idea of a hypothetical vector field, associated with the classical electromagnetic wave. This hypothetical field has a possible mathematical existence only when considering a space of four dimensions. The properties of the electromagnetic wave are preserved and equations with mathematical forms analogous to those of Maxwell’s equations are presented.
文摘We propose that quantum entanglement occurs because the fundamental particles, such as electrons, quarks, and photons, simultaneously experience both the 4th real spatial dimension in R<sup>4</sup> as well as the time dimension in (3 + 1)-D spacetime. Consequently, the entangled particles can never become separated in the 4th spatial dimension no matter how far they have moved apart in the other 3 spatial dimensions. Because the quark and lepton families represent specific different discrete symmetry binary subgroups of SU(2), we can establish that the quantum states of the fundamental particles are defined in 4 spatial dimensions, so there is then no need for a spacetime communication from one detector (or particle) to inform the other detector (or particle) of the physical state of the first detected entangled particle. A clever experiment needs to determine whether the fundamental particles actually experience a 4th spatial dimension, and if so, whether they experience the 4th spatial dimension as the time dimension simultaneously. Apparently, if a Casimir-like test reveals that virtual particles have a non-zero mass, there are claims that a 4th spatial dimension does not exist.