Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the...Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the internet of things(IoT)sensor nodes and energy harvesting[2].Mean-while,considering that capacitor has a much higher energy density than inductor,high-power applications.展开更多
An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the conv...An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the converter was mapped into a look-up table that was synthesized into a set of Boolean equations. A VLSI chip–a field programmable gate array (FPGA) was used to implement the Boolean equations. Features include the size of RAM chip independent of number of rules in the knowledge base, on-chip fuzzification and defuzzification, faster response with speeds over giga fuzzy logic inferences per sec (FLIPS), and an inexpensive VLSI chip. The key application areas are: 1) on-chip integrated controllers;and 2) on-chip co-integration for entire system of sensors, circuits, controllers, and detectors for building complete instrument systems.展开更多
The application areas of conventional push pull converters are limited because of high voltage stress of switches (twice of input voltage). This paper presents a novel zero voltage and zero current switching (ZCS)...The application areas of conventional push pull converters are limited because of high voltage stress of switches (twice of input voltage). This paper presents a novel zero voltage and zero current switching (ZCS) PWM push pull three level converter in which the voltage stress of switches is input voltage. With phase shifted modulation strategy, the leading switches can only realize zero voltage switching (ZVS), and the lagging switches can realize ZCS when block capacitor and block diodes are added. Using the strategy, the converter overcomes the drawbacks presented by the conventional push pull converter, such as magnetic aberration, large switch loss, and voltage spike on switches, so it can get higher efficiency, and a wider application area. The operating principle of the new converter is analyzed and verified on a 600 W, 50 kHz experimental prototype. Several zero voltage and zero current switching PWM push pull three level converters are proposed.展开更多
Phase shifted converter realizes zero voltage switching (ZVS) with the use of leakage inductance of the main transformer, however, the realization of ZVS for lagging bridge leg is difficult. This paper proposes a c...Phase shifted converter realizes zero voltage switching (ZVS) with the use of leakage inductance of the main transformer, however, the realization of ZVS for lagging bridge leg is difficult. This paper proposes a current enhanced principle, and based on the principle, a novel phase shifted converter is proposed, which adds an auxi liary resonant net to the conventional full bridge converter to help the lagging bridge leg to realize ZVS. The principle and the design of the novel converter are analyzed, and the simulational and experimental results verify the principle.展开更多
The soft switching operation principle and operation performance of rugged resonant pole (RRP) is given. The applications of RRP in soft switching DC DC converter and soft switching inverter are discussed in detail. R...The soft switching operation principle and operation performance of rugged resonant pole (RRP) is given. The applications of RRP in soft switching DC DC converter and soft switching inverter are discussed in detail. RRP can constitute buck boost soft switching DC DC converter and isolated soft switching DC DC converter with the automatic limitation performance of output power. Partial series resonant DC DC converter with RRP can realize the zero voltage/zero current switching of power devices. RR...展开更多
The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the ...The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the dependence on the external components and device variation and make smooth transition between hysteresis control loop and pulse width modulation(PWM)control loop.The small signal model was deduced for the buck and boost operation mode.The inductor current slope control(ICSC)was proposed to implement the automatic mode transition between buck and boost mode in one switching cycle.The results show that the converter prototype has good dynamic response capability,achieving 94%efficiency and 95%peak efficiency at full 10 A load current.展开更多
By establishing the discrete iterative mapping model of a current mode controlled buck-boost converter, this paper studies the mechanism of mode shift and stability control of the buck-boost converter operating in dis...By establishing the discrete iterative mapping model of a current mode controlled buck-boost converter, this paper studies the mechanism of mode shift and stability control of the buck-boost converter operating in discontinuous conduction mode with a ramp compensation current. With the bifurcation diagrazn, Lyapunov exponent spectrum, time- domain waveform and parameter space map, the performance of the buck-boost converter circuit utilizing a compensating ramp current has been analysed. The obtained results indicate that the system trajectory is weakly chaotic and strongly intermittent under discontinuous conduction mode. By using ramp compensation, the buck-boost converter can shift from discontinuous conduction mode to continuous conduction mode, and effectively operates in the stable period-one region.展开更多
In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional cal...In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional calculus and the Adomian decomposition method. Some dynamical properties of the current-mode controlled fractional-order Buck- Boost converter are analysed. The simulation is accomplished by using SIMULINK. Numerical simulations are presented to verify the analytical results and we find that bifurcation points will be moved backward as α and β vary. At the same time, the simulation results show that the converter goes through different routes to chaos.展开更多
A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The t...A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.展开更多
A new PWM converter based on soft switching is introduced. The converter uses a minimum number of devices, and requires less switching operations than conventional techniques. Switching is realized solely in a ZVS (z...A new PWM converter based on soft switching is introduced. The converter uses a minimum number of devices, and requires less switching operations than conventional techniques. Switching is realized solely in a ZVS (zero voltage switching) mode, therefore the loss is reduced and EMI (electromagnetic interference) is suppressed. The paper analyzes the operation of ZVS, and discusses the methods for maintaining a unit power factor and constant DC voltage. Changing the modulation index M and the phase angle θ keeps the input current in phase with the voltage. It also keeps the current sinusoidal, and ensures a constant output voltage.展开更多
The discrete iterative map models of peak current-mode (PCM) and valley current-mode (VCM) controlled buck converters, boost converters, and buck-boost converters with ramp compensation are established and their d...The discrete iterative map models of peak current-mode (PCM) and valley current-mode (VCM) controlled buck converters, boost converters, and buck-boost converters with ramp compensation are established and their dynamical behaviours are investigated by using the operation region, parameter space map, bifurcation diagram, and Lyapunov exponent spectrum. The research results indicate that ramp compensation extends the stable operation range of the PCM controlled switching dc-dc converter to D 〉 0.5 and that of the VCM controlled switching dc-dc converter to D 〈 0.5. Compared with PCM controlled switching dc-dc converters with ramp compensation, VCM controlled switching dc-dc converters with ramp compensation exhibit interesting symmetrical dynamics. Experimental results are given to verify the analysis results in this paper.展开更多
An improved perturbation technique proposed in a recent paper (Int. J. Electronics, vol. 63, pp.403-414) has been successfully applied to steady-state analysis of PWM switching converters. This paper extends the algor...An improved perturbation technique proposed in a recent paper (Int. J. Electronics, vol. 63, pp.403-414) has been successfully applied to steady-state analysis of PWM switching converters. This paper extends the algorithm to transient analysis of a broader class of non-linear systems. As an example, the transient response of a Boost PWM switching converter is analyzed to demonstrate its simplicity and accuracy.展开更多
By analyzing the output voltage ripple of a buck-boost converter with large equivalent series resistance(ESR) of output capacitor, one valley voltage-mode controller for buck-boost converter is proposed. Considering...By analyzing the output voltage ripple of a buck-boost converter with large equivalent series resistance(ESR) of output capacitor, one valley voltage-mode controller for buck-boost converter is proposed. Considering the fact that the increasing and decreasing slopes of the inductor current are assumed to be constant during each switching cycle, an especial sampleddata model of valley voltage-mode controlled buck-boost converter is established. Based on this model, the dynamical effect of an output-capacitor time-constant on the valley voltage-mode controlled buck-boost converter is revealed and analyzed via the bifurcation diagrams, the movements of eigenvalues, the Lyapunov exponent spectra, the boundary equations,and the operating-state regions. It is found that with gradual reduction of output-capacitor time-constant, the buck-boost converter in continuous conduction mode(CCM) shows the evolutive dynamic behavior from period-1 to period-2, period-4, period-8, chaos, and invalid state. The stability boundary and the invalidated boundary are derived theoretically by stability analysis, where the stable state of valley voltage-mode controlled buck-boost converter can enter into an unstable state, and the converter can shift from the operation region to a forbidden region. These results verified by time-domain waveforms and phase portraits of both simulation and experiment indicate that the sampled-data model is correct and the time constant of the output capacitor is a critical factor for valley voltage-mode controlled buck-boost converter, which has a significant effect on the dynamics as well as control stability.展开更多
The paper presents modeling approach of a Single Ended Primary Inductance Converter (SEPIC) system. The complete model derivation of the SEPIC converter system has been presented in different modes of operation. Stead...The paper presents modeling approach of a Single Ended Primary Inductance Converter (SEPIC) system. The complete model derivation of the SEPIC converter system has been presented in different modes of operation. Steady state and small signal analysis was carried out on the converter dynamic equations using the method of Harmonic balance Technique. The steady state variables and their respective ripple quantities obtained were plotted against duty ratio D. The results obtained for a supply input voltage of 60 volts to the converter at a duty ratio of D = 0.8 , compares well with simulation results.展开更多
In this paper, direct model predictive control(DMPC) of the noninverting buck-boost DC-DC converter with magnetic coupling between input and output is proposed. Unlike most of the other converters, the subject convert...In this paper, direct model predictive control(DMPC) of the noninverting buck-boost DC-DC converter with magnetic coupling between input and output is proposed. Unlike most of the other converters, the subject converter has the advantage of exhibiting minimum phase behavior in the boost mode. However, a major issue that arises in the classical control of the converter is the dead zone near the transition of the buck and boost mode. The reason for the dead zone is practically unrealizable duty cycles, which are close to zero or unity, of pulse width modulation(PWM) near the transition region. To overcome this issue, we propose to use DMPC. In DMPC, the switches are manipulated directly by the controller without the need of PWM.Thereby, avoiding the dead zone altogether. DMPC also offers several other advantages over classical techniques that include optimality and explicit current constraints. Simulations of the proposed DMPC technique on the converter show that the dead zone has been successfully avoided. Moreover, simulations show that the DMPC technique results in a significantly improved performance as compared to the classical control techniques in terms of response time, reference tracking, and overshoot.展开更多
An analysis technique of steady state and stability for closed-loop PWM DC/DC switching converters is presented. Using this method, the closed-loop switching converter is transformed into an open-loop system. By means...An analysis technique of steady state and stability for closed-loop PWM DC/DC switching converters is presented. Using this method, the closed-loop switching converter is transformed into an open-loop system. By means of the fact that in steady state, the two boundary values are equal in one switching period. The exponential matrix is evaluated by precise time-domain-integration method, and then the related curve between feedback duty cycle and the input one is obtained. Not only can the steady-state duty cycle be found from the curve, but also the stability and stable domain of the system. Compared with other methods, it features with simplicity and less calculation, and fit for numerical simulation and analysis for closed-loop switching converters. The simulation results of examples indicate the correctness of the presented method.展开更多
The working of Canonical switching cell(CSC)converter was studied and its equivalent circuit during ON and OFF states were obtained.State space model of CSC converter in ON and OFF states were developed using the Kirc...The working of Canonical switching cell(CSC)converter was studied and its equivalent circuit during ON and OFF states were obtained.State space model of CSC converter in ON and OFF states were developed using the Kirchhoff laws.The state space matrices were used to construct the transfer functions of ON&OFF states.The step response of the converter was simulated using MATLAB.The step response curve was obtained using different values of circuit components(L,C1,C2 and RL)and optimized.The characteristic parameters such as rise time,overshoot,settling time,steady state error and stability were determined using the step response curve.The response curve shows that there is no overshoot;the rise time and settling time are very low as expected for a converter and its stability is very high but the amplitude is very.The circuit was tuned to attain the expected amplitude using PID controller with the help of Genetic algorithm.The excellent results of circuits’characteristic parameters are very useful guideline for constructing such CSC converters for DC-DC conversions.The circuit characteristic parameters are useful in constructing such CSC converters for DCDC conversions in driving solar energy using solar panel.展开更多
Different power electronic converter topologies are introduced in this paper for both Conventional Switched Reluctance Machine (CSRM) and Toroidal Switched Reluctance Machine (TSRM) drive systems. Their commutation, s...Different power electronic converter topologies are introduced in this paper for both Conventional Switched Reluctance Machine (CSRM) and Toroidal Switched Reluctance Machine (TSRM) drive systems. Their commutation, switch and diode currents, power losses, and efficiencies under over modulation operation are analyzed and compared for converter characteristics study, performance evaluation and topology selection for CSRM and TSRM drive systems. The switch and diode silicon volumes required for each CSRM and TSRM drives are also compared according to their corresponding currents at the equivalent machine torque versus speed operating points.展开更多
A novel electron beam welder ( EBW) power supply was developed. Compared with the traditional 3-phase contrail 12-pulse rectifying supplies, it requires a much lower step-up ratio transformer, but a much less output...A novel electron beam welder ( EBW) power supply was developed. Compared with the traditional 3-phase contrail 12-pulse rectifying supplies, it requires a much lower step-up ratio transformer, but a much less output ripple voltage can be obtained. The design of the main circuit of this new power supply is based on PWM buck-boost converter topology. In developing the system a fuzzy PID control method is adopted because of the strong non-linearity and big signal working conditions of the circuit system. The SABER-MATLAB models and fuzzy algorithm were used in developing the fuzzy PID controller. The co-simulation and experimental results displayed that the unit introduced herein has the characteristics of high control precision and antinterference capability.展开更多
Renewable energy with sources such as photovoltaic(PV)or fuel cells can be utilized for the generation of elec-trical power.But these sources generate fewer voltage values and therefore require high gain converters to...Renewable energy with sources such as photovoltaic(PV)or fuel cells can be utilized for the generation of elec-trical power.But these sources generate fewer voltage values and therefore require high gain converters to match with DC bus voltage in microgrids.These high gain converters can be implemented with switched capacitors to meet the required DC bus voltage.Switched capacitors operate in a series and parallel combination during switch-ing operation and produce high static gain,limits reverse voltage that appears across the components.A novel converter is proposed that satisfies all the features such as high voltage gain,only one switch,forces less potential stress cross the components,ripple current is less.These features of the proposed converter are verified through MATLAB/SIMULINK.展开更多
基金This work is supported by the Macao Science and Technology Development Fund(FDCT)under Grant 0041/2022/A1by the Research Committee of University of Macao under Grant MYRG2022-00004-IME.
文摘Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the internet of things(IoT)sensor nodes and energy harvesting[2].Mean-while,considering that capacitor has a much higher energy density than inductor,high-power applications.
文摘An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the converter was mapped into a look-up table that was synthesized into a set of Boolean equations. A VLSI chip–a field programmable gate array (FPGA) was used to implement the Boolean equations. Features include the size of RAM chip independent of number of rules in the knowledge base, on-chip fuzzification and defuzzification, faster response with speeds over giga fuzzy logic inferences per sec (FLIPS), and an inexpensive VLSI chip. The key application areas are: 1) on-chip integrated controllers;and 2) on-chip co-integration for entire system of sensors, circuits, controllers, and detectors for building complete instrument systems.
文摘The application areas of conventional push pull converters are limited because of high voltage stress of switches (twice of input voltage). This paper presents a novel zero voltage and zero current switching (ZCS) PWM push pull three level converter in which the voltage stress of switches is input voltage. With phase shifted modulation strategy, the leading switches can only realize zero voltage switching (ZVS), and the lagging switches can realize ZCS when block capacitor and block diodes are added. Using the strategy, the converter overcomes the drawbacks presented by the conventional push pull converter, such as magnetic aberration, large switch loss, and voltage spike on switches, so it can get higher efficiency, and a wider application area. The operating principle of the new converter is analyzed and verified on a 600 W, 50 kHz experimental prototype. Several zero voltage and zero current switching PWM push pull three level converters are proposed.
文摘Phase shifted converter realizes zero voltage switching (ZVS) with the use of leakage inductance of the main transformer, however, the realization of ZVS for lagging bridge leg is difficult. This paper proposes a current enhanced principle, and based on the principle, a novel phase shifted converter is proposed, which adds an auxi liary resonant net to the conventional full bridge converter to help the lagging bridge leg to realize ZVS. The principle and the design of the novel converter are analyzed, and the simulational and experimental results verify the principle.
文摘The soft switching operation principle and operation performance of rugged resonant pole (RRP) is given. The applications of RRP in soft switching DC DC converter and soft switching inverter are discussed in detail. RRP can constitute buck boost soft switching DC DC converter and isolated soft switching DC DC converter with the automatic limitation performance of output power. Partial series resonant DC DC converter with RRP can realize the zero voltage/zero current switching of power devices. RR...
文摘The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the dependence on the external components and device variation and make smooth transition between hysteresis control loop and pulse width modulation(PWM)control loop.The small signal model was deduced for the buck and boost operation mode.The inductor current slope control(ICSC)was proposed to implement the automatic mode transition between buck and boost mode in one switching cycle.The results show that the converter prototype has good dynamic response capability,achieving 94%efficiency and 95%peak efficiency at full 10 A load current.
基金Project supported by the National Natural Science Foundations of China (Grant Nos 50677056 and 60472059)
文摘By establishing the discrete iterative mapping model of a current mode controlled buck-boost converter, this paper studies the mechanism of mode shift and stability control of the buck-boost converter operating in discontinuous conduction mode with a ramp compensation current. With the bifurcation diagrazn, Lyapunov exponent spectrum, time- domain waveform and parameter space map, the performance of the buck-boost converter circuit utilizing a compensating ramp current has been analysed. The obtained results indicate that the system trajectory is weakly chaotic and strongly intermittent under discontinuous conduction mode. By using ramp compensation, the buck-boost converter can shift from discontinuous conduction mode to continuous conduction mode, and effectively operates in the stable period-one region.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51177117)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20100201110023)
文摘In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional calculus and the Adomian decomposition method. Some dynamical properties of the current-mode controlled fractional-order Buck- Boost converter are analysed. The simulation is accomplished by using SIMULINK. Numerical simulations are presented to verify the analytical results and we find that bifurcation points will be moved backward as α and β vary. At the same time, the simulation results show that the converter goes through different routes to chaos.
文摘A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.
文摘A new PWM converter based on soft switching is introduced. The converter uses a minimum number of devices, and requires less switching operations than conventional techniques. Switching is realized solely in a ZVS (zero voltage switching) mode, therefore the loss is reduced and EMI (electromagnetic interference) is suppressed. The paper analyzes the operation of ZVS, and discusses the methods for maintaining a unit power factor and constant DC voltage. Changing the modulation index M and the phase angle θ keeps the input current in phase with the voltage. It also keeps the current sinusoidal, and ensures a constant output voltage.
基金Project supported by the National Natural Science Foundation of China (Grant No.50677056)the Natural Science Foundation of Jiangsu Province,China (Grant No.BK2009105)+1 种基金the Cultivation Project of Excellent Doctorate Dissertation of Southwest Jiaotong University,Chinathe Doctoral Innovation Foundation of Southwest Jiaotong University,China
文摘The discrete iterative map models of peak current-mode (PCM) and valley current-mode (VCM) controlled buck converters, boost converters, and buck-boost converters with ramp compensation are established and their dynamical behaviours are investigated by using the operation region, parameter space map, bifurcation diagram, and Lyapunov exponent spectrum. The research results indicate that ramp compensation extends the stable operation range of the PCM controlled switching dc-dc converter to D 〉 0.5 and that of the VCM controlled switching dc-dc converter to D 〈 0.5. Compared with PCM controlled switching dc-dc converters with ramp compensation, VCM controlled switching dc-dc converters with ramp compensation exhibit interesting symmetrical dynamics. Experimental results are given to verify the analysis results in this paper.
基金Natural Science Foundation of Guang Dong ProvinceDoctoral Fund of the State Education Commission of China
文摘An improved perturbation technique proposed in a recent paper (Int. J. Electronics, vol. 63, pp.403-414) has been successfully applied to steady-state analysis of PWM switching converters. This paper extends the algorithm to transient analysis of a broader class of non-linear systems. As an example, the transient response of a Boost PWM switching converter is analyzed to demonstrate its simplicity and accuracy.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61371033 and 51407054)the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201442)the Fundamental Research Funds for the Central Universities of China(Grant No.2682016CX035)
文摘By analyzing the output voltage ripple of a buck-boost converter with large equivalent series resistance(ESR) of output capacitor, one valley voltage-mode controller for buck-boost converter is proposed. Considering the fact that the increasing and decreasing slopes of the inductor current are assumed to be constant during each switching cycle, an especial sampleddata model of valley voltage-mode controlled buck-boost converter is established. Based on this model, the dynamical effect of an output-capacitor time-constant on the valley voltage-mode controlled buck-boost converter is revealed and analyzed via the bifurcation diagrams, the movements of eigenvalues, the Lyapunov exponent spectra, the boundary equations,and the operating-state regions. It is found that with gradual reduction of output-capacitor time-constant, the buck-boost converter in continuous conduction mode(CCM) shows the evolutive dynamic behavior from period-1 to period-2, period-4, period-8, chaos, and invalid state. The stability boundary and the invalidated boundary are derived theoretically by stability analysis, where the stable state of valley voltage-mode controlled buck-boost converter can enter into an unstable state, and the converter can shift from the operation region to a forbidden region. These results verified by time-domain waveforms and phase portraits of both simulation and experiment indicate that the sampled-data model is correct and the time constant of the output capacitor is a critical factor for valley voltage-mode controlled buck-boost converter, which has a significant effect on the dynamics as well as control stability.
文摘The paper presents modeling approach of a Single Ended Primary Inductance Converter (SEPIC) system. The complete model derivation of the SEPIC converter system has been presented in different modes of operation. Steady state and small signal analysis was carried out on the converter dynamic equations using the method of Harmonic balance Technique. The steady state variables and their respective ripple quantities obtained were plotted against duty ratio D. The results obtained for a supply input voltage of 60 volts to the converter at a duty ratio of D = 0.8 , compares well with simulation results.
文摘In this paper, direct model predictive control(DMPC) of the noninverting buck-boost DC-DC converter with magnetic coupling between input and output is proposed. Unlike most of the other converters, the subject converter has the advantage of exhibiting minimum phase behavior in the boost mode. However, a major issue that arises in the classical control of the converter is the dead zone near the transition of the buck and boost mode. The reason for the dead zone is practically unrealizable duty cycles, which are close to zero or unity, of pulse width modulation(PWM) near the transition region. To overcome this issue, we propose to use DMPC. In DMPC, the switches are manipulated directly by the controller without the need of PWM.Thereby, avoiding the dead zone altogether. DMPC also offers several other advantages over classical techniques that include optimality and explicit current constraints. Simulations of the proposed DMPC technique on the converter show that the dead zone has been successfully avoided. Moreover, simulations show that the DMPC technique results in a significantly improved performance as compared to the classical control techniques in terms of response time, reference tracking, and overshoot.
文摘An analysis technique of steady state and stability for closed-loop PWM DC/DC switching converters is presented. Using this method, the closed-loop switching converter is transformed into an open-loop system. By means of the fact that in steady state, the two boundary values are equal in one switching period. The exponential matrix is evaluated by precise time-domain-integration method, and then the related curve between feedback duty cycle and the input one is obtained. Not only can the steady-state duty cycle be found from the curve, but also the stability and stable domain of the system. Compared with other methods, it features with simplicity and less calculation, and fit for numerical simulation and analysis for closed-loop switching converters. The simulation results of examples indicate the correctness of the presented method.
文摘The working of Canonical switching cell(CSC)converter was studied and its equivalent circuit during ON and OFF states were obtained.State space model of CSC converter in ON and OFF states were developed using the Kirchhoff laws.The state space matrices were used to construct the transfer functions of ON&OFF states.The step response of the converter was simulated using MATLAB.The step response curve was obtained using different values of circuit components(L,C1,C2 and RL)and optimized.The characteristic parameters such as rise time,overshoot,settling time,steady state error and stability were determined using the step response curve.The response curve shows that there is no overshoot;the rise time and settling time are very low as expected for a converter and its stability is very high but the amplitude is very.The circuit was tuned to attain the expected amplitude using PID controller with the help of Genetic algorithm.The excellent results of circuits’characteristic parameters are very useful guideline for constructing such CSC converters for DC-DC conversions.The circuit characteristic parameters are useful in constructing such CSC converters for DCDC conversions in driving solar energy using solar panel.
文摘Different power electronic converter topologies are introduced in this paper for both Conventional Switched Reluctance Machine (CSRM) and Toroidal Switched Reluctance Machine (TSRM) drive systems. Their commutation, switch and diode currents, power losses, and efficiencies under over modulation operation are analyzed and compared for converter characteristics study, performance evaluation and topology selection for CSRM and TSRM drive systems. The switch and diode silicon volumes required for each CSRM and TSRM drives are also compared according to their corresponding currents at the equivalent machine torque versus speed operating points.
文摘A novel electron beam welder ( EBW) power supply was developed. Compared with the traditional 3-phase contrail 12-pulse rectifying supplies, it requires a much lower step-up ratio transformer, but a much less output ripple voltage can be obtained. The design of the main circuit of this new power supply is based on PWM buck-boost converter topology. In developing the system a fuzzy PID control method is adopted because of the strong non-linearity and big signal working conditions of the circuit system. The SABER-MATLAB models and fuzzy algorithm were used in developing the fuzzy PID controller. The co-simulation and experimental results displayed that the unit introduced herein has the characteristics of high control precision and antinterference capability.
文摘Renewable energy with sources such as photovoltaic(PV)or fuel cells can be utilized for the generation of elec-trical power.But these sources generate fewer voltage values and therefore require high gain converters to match with DC bus voltage in microgrids.These high gain converters can be implemented with switched capacitors to meet the required DC bus voltage.Switched capacitors operate in a series and parallel combination during switch-ing operation and produce high static gain,limits reverse voltage that appears across the components.A novel converter is proposed that satisfies all the features such as high voltage gain,only one switch,forces less potential stress cross the components,ripple current is less.These features of the proposed converter are verified through MATLAB/SIMULINK.