This paper presents a disturbance observer based control strategy for four wheel steering systems in order to improve vehicle handling stability. By combination of feedforward control and feedback control, the front a...This paper presents a disturbance observer based control strategy for four wheel steering systems in order to improve vehicle handling stability. By combination of feedforward control and feedback control, the front and rear wheel steering angles are controlled simultaneously to follow both the desired sideslip angle and the yaw rate of the reference vehicle model.A nonlinear three degree-of-freedom four wheel steering vehicle model containing lateral, yaw and roll motions is built up, which also takes the dynamic effects of crosswind into consideration.The disturbance observer based control method is provided to cope with ignored nonlinear dynamics and to handle exogenous disturbances. Finally, a simulation experiment is carried out,which shows that the proposed four wheel steering vehicle can guarantee handling stability and present strong robustness against external disturbances.展开更多
An four wheel steering (4WS) feedback control system that simultaneously achieves both body sideslip angle and yaw rate responses always desirable regardless of changes in vehicle dynamics. Quantitative feedback theor...An four wheel steering (4WS) feedback control system that simultaneously achieves both body sideslip angle and yaw rate responses always desirable regardless of changes in vehicle dynamics. Quantitative feedback theory (QFT) is offered as the main tool for designing the control law. Inverted decoupling is also employed to make multivariable quantitative feedback design easier. Various nonlinear analyses are carried out and show that the proposed control system is a robust decoupling controller which not only makes body sideslip angle and yaw rate of the vehicle track the desired reference input signals respectively, but also satisfies the requirement of robustness for the control system. The results also indicate that the control system can make it available to realize ideal lateral steering dynamics tracking for vehicles.展开更多
基金supported by the National Natural Science Foundation of China(61573165,61520106008,61703178)
文摘This paper presents a disturbance observer based control strategy for four wheel steering systems in order to improve vehicle handling stability. By combination of feedforward control and feedback control, the front and rear wheel steering angles are controlled simultaneously to follow both the desired sideslip angle and the yaw rate of the reference vehicle model.A nonlinear three degree-of-freedom four wheel steering vehicle model containing lateral, yaw and roll motions is built up, which also takes the dynamic effects of crosswind into consideration.The disturbance observer based control method is provided to cope with ignored nonlinear dynamics and to handle exogenous disturbances. Finally, a simulation experiment is carried out,which shows that the proposed four wheel steering vehicle can guarantee handling stability and present strong robustness against external disturbances.
文摘An four wheel steering (4WS) feedback control system that simultaneously achieves both body sideslip angle and yaw rate responses always desirable regardless of changes in vehicle dynamics. Quantitative feedback theory (QFT) is offered as the main tool for designing the control law. Inverted decoupling is also employed to make multivariable quantitative feedback design easier. Various nonlinear analyses are carried out and show that the proposed control system is a robust decoupling controller which not only makes body sideslip angle and yaw rate of the vehicle track the desired reference input signals respectively, but also satisfies the requirement of robustness for the control system. The results also indicate that the control system can make it available to realize ideal lateral steering dynamics tracking for vehicles.