期刊文献+
共找到5,954篇文章
< 1 2 250 >
每页显示 20 50 100
Hybrid Gene Selection Methods for High-Dimensional Lung Cancer Data Using Improved Arithmetic Optimization Algorithm
1
作者 Mutasem K.Alsmadi 《Computers, Materials & Continua》 SCIE EI 2024年第6期5175-5200,共26页
Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression ... Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression microarrays have made it possible to find genetic biomarkers for cancer diagnosis and prediction in a high-throughput manner.Machine Learning(ML)has been widely used to diagnose and classify lung cancer where the performance of ML methods is evaluated to identify the appropriate technique.Identifying and selecting the gene expression patterns can help in lung cancer diagnoses and classification.Normally,microarrays include several genes and may cause confusion or false prediction.Therefore,the Arithmetic Optimization Algorithm(AOA)is used to identify the optimal gene subset to reduce the number of selected genes.Which can allow the classifiers to yield the best performance for lung cancer classification.In addition,we proposed a modified version of AOA which can work effectively on the high dimensional dataset.In the modified AOA,the features are ranked by their weights and are used to initialize the AOA population.The exploitation process of AOA is then enhanced by developing a local search algorithm based on two neighborhood strategies.Finally,the efficiency of the proposed methods was evaluated on gene expression datasets related to Lung cancer using stratified 4-fold cross-validation.The method’s efficacy in selecting the optimal gene subset is underscored by its ability to maintain feature proportions between 10%to 25%.Moreover,the approach significantly enhances lung cancer prediction accuracy.For instance,Lung_Harvard1 achieved an accuracy of 97.5%,Lung_Harvard2 and Lung_Michigan datasets both achieved 100%,Lung_Adenocarcinoma obtained an accuracy of 88.2%,and Lung_Ontario achieved an accuracy of 87.5%.In conclusion,the results indicate the potential promise of the proposed modified AOA approach in classifying microarray cancer data. 展开更多
关键词 Lung cancer gene selection improved arithmetic optimization algorithm and machine learning
下载PDF
An Algorithm for Short-Circuit Current Interval in Distribution Networks with Inverter Type Distributed Generation Based on Affine Arithmetic
2
作者 Yan Zhang Bowen Du +3 位作者 Benren Pan GuannanWang Guoqiang Xie Tong Jiang 《Energy Engineering》 EI 2024年第7期1903-1920,共18页
During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in unc... During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in uncertainties in the calculation of the short-circuit current at the time of a fault.Additionally,the impacts of such uncertainties around short-circuit currents will increase with the increase of distributed power sources.Thus,it is very important to develop a method for calculating the short-circuit current while considering the uncertainties in a distribution network.In this study,an affine arithmetic algorithm for calculating short-circuit current intervals in distribution networks with distributed power sources while considering power fluctuations is presented.The proposed algorithm includes two stages.In the first stage,normal operations are considered to establish a conservative interval affine optimization model of injection currents in distributed power sources.Constrained by the fluctuation range of distributed generation power at the moment of fault occurrence,the model can then be used to solve for the fluctuation range of injected current amplitudes in distributed power sources.The second stage is implemented after a malfunction occurs.In this stage,an affine optimization model is first established.This model is developed to characterizes the short-circuit current interval of a transmission line,and is constrained by the fluctuation range of the injected current amplitude of DG during normal operations.Finally,the range of the short-circuit current amplitudes of distribution network lines after a short-circuit fault occurs is predicted.The algorithm proposed in this article obtains an interval range containing accurate results through interval operation.Compared with traditional point value calculation methods,interval calculation methods can provide more reliable analysis and calculation results.The range of short-circuit current amplitude obtained by this algorithm is slightly larger than those obtained using the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Therefore,the proposed algorithm has good suitability and does not require iterative calculations,resulting in a significant improvement in computational speed compared to the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Furthermore,the proposed algorithm can provide more reliable analysis and calculation results,improving the safety and stability of power systems. 展开更多
关键词 Short circuit calculation inverter type distributed power supplies affine arithmetic distribution network
下载PDF
Enhanced Arithmetic Optimization Algorithm Guided by a Local Search for the Feature Selection Problem
3
作者 Sana Jawarneh 《Intelligent Automation & Soft Computing》 2024年第3期511-525,共15页
High-dimensional datasets present significant challenges for classification tasks.Dimensionality reduction,a crucial aspect of data preprocessing,has gained substantial attention due to its ability to improve classifi... High-dimensional datasets present significant challenges for classification tasks.Dimensionality reduction,a crucial aspect of data preprocessing,has gained substantial attention due to its ability to improve classification per-formance.However,identifying the optimal features within high-dimensional datasets remains a computationally demanding task,necessitating the use of efficient algorithms.This paper introduces the Arithmetic Optimization Algorithm(AOA),a novel approach for finding the optimal feature subset.AOA is specifically modified to address feature selection problems based on a transfer function.Additionally,two enhancements are incorporated into the AOA algorithm to overcome limitations such as limited precision,slow convergence,and susceptibility to local optima.The first enhancement proposes a new method for selecting solutions to be improved during the search process.This method effectively improves the original algorithm’s accuracy and convergence speed.The second enhancement introduces a local search with neighborhood strategies(AOA_NBH)during the AOA exploitation phase.AOA_NBH explores the vast search space,aiding the algorithm in escaping local optima.Our results demonstrate that incorporating neighborhood methods enhances the output and achieves significant improvement over state-of-the-art methods. 展开更多
关键词 arithmetic optimization algorithm CLASSIFICATION feature selection problem optimization
下载PDF
Improved Arithmetic Optimization Algorithm with Multi-Strategy Fusion Mechanism and Its Application in Engineering Design
4
作者 Yu Liu Minge Chen +3 位作者 Ran Yin Jianwei Li Yafei Zhao Xiaohua Zhang 《Journal of Applied Mathematics and Physics》 2024年第6期2212-2253,共42页
This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a mul... This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a multi-strategy mechanism (BSFAOA). This algorithm introduces three strategies within the standard AOA framework: an adaptive balance factor SMOA based on sine functions, a search strategy combining Spiral Search and Brownian Motion, and a hybrid perturbation strategy based on Whale Fall Mechanism and Polynomial Differential Learning. The BSFAOA algorithm is analyzed in depth on the well-known 23 benchmark functions, CEC2019 test functions, and four real optimization problems. The experimental results demonstrate that the BSFAOA algorithm can better balance the exploration and exploitation capabilities, significantly enhancing the stability, convergence mode, and search efficiency of the AOA algorithm. 展开更多
关键词 arithmetic Optimization Algorithm Adaptive Balance Factor Spiral Search Brownian Motion Whale Fall Mechanism
下载PDF
Probability Distribution of Arithmetic Average of China Aviation Network Edge Vertices Nearest Neighbor Average Degree Value and Its Evolutionary Trace Based on Complex Network
5
作者 Cheng Xiangjun Yang Fang Xiong Zhihua 《Journal of Traffic and Transportation Engineering》 2024年第4期163-174,共12页
In order to reveal the complex network characteristics and evolution principle of China aviation network,the probability distribution and evolution trace of arithmetic average of edge vertices nearest neighbor average... In order to reveal the complex network characteristics and evolution principle of China aviation network,the probability distribution and evolution trace of arithmetic average of edge vertices nearest neighbor average degree values of China aviation network were studied based on the statistics data of China civil aviation network in 1988,1994,2001,2008 and 2015.According to the theory and method of complex network,the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network.Based on the statistical data,the arithmetic averages of edge vertices nearest neighbor average degree values of China aviation network in 1988,1994,2001,2008 and 2015 were calculated.Using the probability statistical analysis method,it was found that the arithmetic average of edge vertices nearest neighbor average degree values had the probability distribution of normal function and the position parameters and scale parameters of the probability distribution had linear evolution trace. 展开更多
关键词 Complex network China aviation network arithmetic average of edge vertices nearest neighbor average degree value linear evolution trace
下载PDF
On the Equality of Weighted BajratarevićMeans to Quasi-Arithmetic Means
6
作者 Yaxun Yang 《Journal of Applied Mathematics and Physics》 2024年第4期1126-1133,共8页
In this paper, we considered the equality problem of weighted Bajraktarević means with weighted quasi-arithmetic means. Using the method of substituting for functions, we first transform the equality problem into solv... In this paper, we considered the equality problem of weighted Bajraktarević means with weighted quasi-arithmetic means. Using the method of substituting for functions, we first transform the equality problem into solving an equivalent functional equation. We obtain the necessary and sufficient conditions for the equality equation. 展开更多
关键词 Bajraktarević Means Quasi-arithmetic Means Equality Problem Functional Equation
下载PDF
Fast Arithmetics Using Chinese Remaindering
7
作者 George Davida Bruce Litow 《China Communications》 SCIE CSCD 2007年第4期45-47,共3页
In this paper,some issues concerning the Chinese remaindering representation are discussed.A new converting method is described. An efficient refinement of the division algorithm of Chiu,Davida and Litow is given.
关键词 WILL NCI Fast arithmetics Using Chinese Remaindering 一刀
下载PDF
Solving Arithmetic Word Problems of Entailing Deep Implicit Relations by Qualia Syntax-Semantic Model
8
作者 Hao Meng Xinguo Yu +3 位作者 Bin He Litian Huang Liang Xue Zongyou Qiu 《Computers, Materials & Continua》 SCIE EI 2023年第10期541-555,共15页
Solving arithmetic word problems that entail deep implicit relations is still a challenging problem.However,significant progress has been made in solving Arithmetic Word Problems(AWP)over the past six decades.This pap... Solving arithmetic word problems that entail deep implicit relations is still a challenging problem.However,significant progress has been made in solving Arithmetic Word Problems(AWP)over the past six decades.This paper proposes to discover deep implicit relations by qualia inference to solve Arithmetic Word Problems entailing Deep Implicit Relations(DIR-AWP),such as entailing commonsense or subject-domain knowledge involved in the problem-solving process.This paper proposes to take three steps to solve DIR-AWPs,in which the first three steps are used to conduct the qualia inference process.The first step uses the prepared set of qualia-quantity models to identify qualia scenes from the explicit relations extracted by the Syntax-Semantic(S2)method from the given problem.The second step adds missing entities and deep implicit relations in order using the identified qualia scenes and the qualia-quantity models,respectively.The third step distills the relations for solving the given problem by pruning the spare branches of the qualia dependency graph of all the acquired relations.The research contributes to the field by presenting a comprehensive approach combining explicit and implicit knowledge to enhance reasoning abilities.The experimental results on Math23K demonstrate hat the proposed algorithm is superior to the baseline algorithms in solving AWPs requiring deep implicit relations. 展开更多
关键词 arithmetic word problem implicit quantity relations qualia syntax-semantic model
下载PDF
Differential Evolution with Arithmetic Optimization Algorithm Enabled Multi-Hop Routing Protocol
9
作者 Manar Ahmed Hamza Haya Mesfer Alshahrani +5 位作者 Sami Dhahbi Mohamed K Nour Mesfer Al Duhayyim ElSayed M.Tag El Din Ishfaq Yaseen Abdelwahed Motwakel 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1759-1773,共15页
Wireless Sensor Networks(WSN)has evolved into a key technology for ubiquitous living and the domain of interest has remained active in research owing to its extensive range of applications.In spite of this,it is chall... Wireless Sensor Networks(WSN)has evolved into a key technology for ubiquitous living and the domain of interest has remained active in research owing to its extensive range of applications.In spite of this,it is challenging to design energy-efficient WSN.The routing approaches are leveraged to reduce the utilization of energy and prolonging the lifespan of network.In order to solve the restricted energy problem,it is essential to reduce the energy utilization of data,transmitted from the routing protocol and improve network development.In this background,the current study proposes a novel Differential Evolution with Arithmetic Optimization Algorithm Enabled Multi-hop Routing Protocol(DEAOA-MHRP)for WSN.The aim of the proposed DEAOA-MHRP model is select the optimal routes to reach the destination in WSN.To accomplish this,DEAOA-MHRP model initially integrates the concepts of Different Evolution(DE)and Arithmetic Optimization Algorithms(AOA)to improve convergence rate and solution quality.Besides,the inclusion of DE in traditional AOA helps in overcoming local optima problems.In addition,the proposed DEAOA-MRP technique derives a fitness function comprising two input variables such as residual energy and distance.In order to ensure the energy efficient performance of DEAOA-MHRP model,a detailed comparative study was conducted and the results established its superior performance over recent approaches. 展开更多
关键词 Wireless sensor network ROUTING multihop communication arithmetic optimization algorithm fitness function
下载PDF
Fin Field Effect Transistor with Active 4-Bit Arithmetic Operations in 22 nm Technology
10
作者 S.Senthilmurugan K.Gunaseelan 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1323-1336,共14页
A design of a high-speed multi-core processor with compact size is a trending approach in the Integrated Circuits(ICs)fabrication industries.Because whenever device size comes down into narrow,designers facing many po... A design of a high-speed multi-core processor with compact size is a trending approach in the Integrated Circuits(ICs)fabrication industries.Because whenever device size comes down into narrow,designers facing many power den-sity issues should be reduced by scaling threshold voltage and supply voltage.Initially,Complementary Metal Oxide Semiconductor(CMOS)technology sup-ports power saving up to 32 nm gate length,but further scaling causes short severe channel effects such as threshold voltage swing,mobility degradation,and more leakage power(less than 32)at gate length.Hence,it directly affects the arithmetic logic unit(ALU),which suffers a significant power density of the scaled multi-core architecture.Therefore,it losses reliability features to get overheating and increased temperature.This paper presents a novel power mini-mization technique for active 4-bit ALU operations using Fin Field Effect Tran-sistor(FinFET)at 22 nm technology.Based on this,a diode is directly connected to the load transistor,and it is active only at the saturation region as a function.Thereby,the access transistor can cutoff of the leakage current,and sleep transis-tors control theflow of leakage current corresponding to each instant ALU opera-tion.The combination of transistors(access and sleep)reduces the leakage current from micro to nano-ampere.Further,the power minimization is achieved by con-necting the number of transistors(6T and 10T)of the FinFET structure to ALU with 22 nm technology.For simulation concerns,a Tanner(T-Spice)with 22 nm technology implements the proposed design,which reduces threshold vol-tage swing,supply power,leakage current,gate length delay,etc.As a result,it is quite suitable for the ALU architecture of a high-speed multi-core processor. 展开更多
关键词 FinFET(22 nm)technology diode connection arithmetic logic unit reduce threshold voltage swing gate length delay leakage power
下载PDF
Arithmetic Operations of Generalized Trapezoidal Picture Fuzzy Numbers by Vertex Method
11
作者 Mohammad Kamrul Hasan Abeda Sultana Nirmal Kanti Mitra 《American Journal of Computational Mathematics》 2023年第1期99-121,共23页
In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis... In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis. Various related properties are explored. Finally, some computations of picture fuzzy functions over generalized picture fuzzy variables are illustrated by using our proposed technique. 展开更多
关键词 Picture Fuzzy Set Generalized Trapezoidal Picture Fuzzy Number γ β)-Cut arithmetic Operations Vertex Method
下载PDF
数据、算力和算法结合反映新质生产力的数字化发展水准 被引量:9
12
作者 任保平 豆渊博 《浙江工商大学学报》 CSSCI 北大核心 2024年第3期91-100,共10页
数字经济的发展促进新的劳动主体、新的生产工具和新的生产要素不断涌现,为人们认识世界和改造世界创造了新模式,新质生产力的数字化发展是新质生产力在数字经济领域的表现。数字经济时代,数据作为新质生产力数字化发展的新要素,算力体... 数字经济的发展促进新的劳动主体、新的生产工具和新的生产要素不断涌现,为人们认识世界和改造世界创造了新模式,新质生产力的数字化发展是新质生产力在数字经济领域的表现。数字经济时代,数据作为新质生产力数字化发展的新要素,算力体现新质生产力数字化发展的新动能,算法反映新质生产力数字化发展的新优势,数据、算力和算法的结合反映了新质生产力的数字化发展水准,形成数字时代的新质生产力。新发展阶段,数据、算力和算法的结合首先引起生产力的决策革命,其次引起生产力的工具革命、劳动力革命、生产要素革命和技术—经济范式革命,进一步推动新质生产力的数字化发展。在全球经济新周期的背景下,提高新质生产力的数字化发展水平已经成为推动经济社会高质量发展的关键力量。 展开更多
关键词 新质生产力 数据+算力+算法 数字技术 智能化工具
下载PDF
基于改进仿射算法的主动配电网区间调度 被引量:1
13
作者 程杉 左先旺 +2 位作者 杨堃 傅桐 王灿 《电力自动化设备》 EI CSCD 北大核心 2024年第1期40-48,共9页
针对高渗透率分布式可再生能源的不确定性和仿射算法结果的保守性影响调度计划的问题,提出基于改进仿射算法的主动配电网区间优化调度模型及其求解方法。以区间变量表征分布式可再生能源中风机和光伏出力的不确定性,利用带有误差修正机... 针对高渗透率分布式可再生能源的不确定性和仿射算法结果的保守性影响调度计划的问题,提出基于改进仿射算法的主动配电网区间优化调度模型及其求解方法。以区间变量表征分布式可再生能源中风机和光伏出力的不确定性,利用带有误差修正机制的灰色马尔可夫模型得到风机和光伏出力的区间预测值。建立综合考虑主动配电网运行约束和灵活性指标,以综合运行费用最低和净负荷波动最小为目标的主动配电网多目标区间优化调度数学模型。在仿射算法的非线性运算中引入区间泰勒公式,提出一种改进仿射算法并将其应用于主动配电网潮流计算,并通过CPLEX和INTLAB对调度模型进行联合求解。修改的IEEE 33节点系统的仿真结果表明,区间优化调度可为调度人员提供更直观的主动配电网状态量上、下界信息,而且所提方法的计算效率更高,所得区间结果的保守性、可靠性和有效性更优。 展开更多
关键词 不确定性 改进仿射算法 保守性 区间优化调度 潮流计算
下载PDF
风电不确定性输入下电力系统仿真的区间仿射算法
14
作者 黄方能 梅勇 +2 位作者 周剑 庞学跃 许琴 《电测与仪表》 北大核心 2024年第7期74-80,共7页
大规模的风电机组并网改变了以同步发电机为主的传统电力系统的暂态特性,此外风电出力的随机性会影响电力系统的暂态稳定性。为此,文中提出了基于仿射算术的电力系统不确定性时域仿真算法,以考虑风电出力的波动性。在双馈风电机组机电... 大规模的风电机组并网改变了以同步发电机为主的传统电力系统的暂态特性,此外风电出力的随机性会影响电力系统的暂态稳定性。为此,文中提出了基于仿射算术的电力系统不确定性时域仿真算法,以考虑风电出力的波动性。在双馈风电机组机电暂态模型的基础上,扩展电力系统机电暂态模型,建立考虑双馈风电机组输入功率波动下的电力系统机电暂态仿射模型,通过隐式梯形积分法将仿射模型转化为的仿射雅克比矩阵方程迭代求解。仿真结果表明,文中所提出的仿射方法在不假设输入不确定量概率分布的情况下,能够较蒙特卡洛仿真更快地获得电力系统暂态响应的区间边界。 展开更多
关键词 风电不确定性 区间 暂态稳定性 时域仿真 仿射算术
下载PDF
一种引入过渡阶段和高斯变异的改进算术优化算法
15
作者 张伟 李世港 +2 位作者 齐明楚 周徐虎 宋燕 《小型微型计算机系统》 CSCD 北大核心 2024年第7期1568-1576,共9页
针对算术优化算法收敛精度低、易陷入局部最优等问题,提出了一种改进的过渡高斯算术优化算法,该算法将新的非线性过渡阶段与改进的高斯变异策略相结合.首先,为了更好地从勘探阶段的高离散度策略过渡到开发阶段的低离散度策略,提出过渡... 针对算术优化算法收敛精度低、易陷入局部最优等问题,提出了一种改进的过渡高斯算术优化算法,该算法将新的非线性过渡阶段与改进的高斯变异策略相结合.首先,为了更好地从勘探阶段的高离散度策略过渡到开发阶段的低离散度策略,提出过渡阶段策略,并通过比较三种曲线实验重构数学优化加速函数.其次,引入具有算术优化算法特性的高斯变异策略和边界函数策略,加强算法跳出局部区域的能力.最后,将改进后的算术优化算法与几种著名算法进行对比,并进行不同维度的可扩展性分析,验证了所提算法的有效性.此外,该算法在压力容器设计问题中进行了测试.实验结果表明,TGAOA具有优异的收敛精度、收敛速度和鲁棒性. 展开更多
关键词 算术优化算法 过渡阶段 高斯分布 压力容器设计
下载PDF
基于IAOA-SVM模型结构时变可靠性研究
16
作者 郑建校 张小康 +1 位作者 王亮亮 张锦华 《安徽理工大学学报(自然科学版)》 CAS 2024年第3期7-14,共8页
目的为有效解决使用传统代理模型进行结构时变可靠性研究中存在流程复杂、计算效率低等问题。方法提出以改进算术优化算法(Improved Arithmetic Optimization Algorithm,IAOA)优化支持向量机模型(Support Vector Machine,SVM)进行时变... 目的为有效解决使用传统代理模型进行结构时变可靠性研究中存在流程复杂、计算效率低等问题。方法提出以改进算术优化算法(Improved Arithmetic Optimization Algorithm,IAOA)优化支持向量机模型(Support Vector Machine,SVM)进行时变可靠性研究的方法,结合IAOA-SVM模型和极值理论,以某塔式起重机回转支承为研究对象,对其进行动态确定性分析获取样本数据,建立IAOA-SVM可靠性模型,采用蒙特卡洛法求解得到其可靠度结果,并与EKM和ERSM算法对比分析其仿真精度和效率。结果当回转支承径向变形许用值为0.278×10^(-3)m时,采用蒙特卡洛法求解得到其可靠度为99.68%,IAOA-SVM模型相比EKM和ERSM方法仿真效率有所提升,建模精度分别提高了10.42%和9.23%。结论IAOA-SVM方法在建模和仿真精度与效率方面具有较明显的优势,IAOA-SVM方法为求解机构时变可靠度难题提供了一种新的解决思路。 展开更多
关键词 时变可靠性 支持向量机 算术优化算法 回转支承
下载PDF
优化聚类分簇结合自适应中继策略的双簇首WSNs路由算法
17
作者 张晶 高翔 张宏 《小型微型计算机系统》 CSCD 北大核心 2024年第4期1007-1017,共11页
针对无线传感器网络中分簇路由算法节点能量利用率低、能量消耗不均匀等问题,提出了一种优化聚类分簇结合自适应中继策略的双簇首无线传感器网络路由算法.该算法对分簇路由协议中的三个阶段分别进行优化设计.成簇阶段,首先对双簇首模型... 针对无线传感器网络中分簇路由算法节点能量利用率低、能量消耗不均匀等问题,提出了一种优化聚类分簇结合自适应中继策略的双簇首无线传感器网络路由算法.该算法对分簇路由协议中的三个阶段分别进行优化设计.成簇阶段,首先对双簇首模型下最优成簇规模与网络能耗的关系进行理论分析,然后使用改进的算术优化算法计算模糊C均值算法的初始聚类中心,提高了模糊C均值算法聚类成簇的准确率和鲁棒性.簇首选举阶段,引入双簇首策略,以节点的位置、能量和中心度为影响因子,根据承担任务的不同分别为内外簇首设计独立的簇首评价函数,以评价值为依据由节点分布式动态选举簇首减少了广播数量,同时可以将整个簇的能量负载平均分配到每个簇成员节点中.数据传输阶段,设置了多跳中继策略的距离适用条件,并以能量消耗速率为依据选择中继节点,避免了节点提前过载.仿真结果表明:在多种规模的网络中,该算法相较于对比算法在均衡网络负载、提高能量利用效率方面效果更好,从而延长了网络的有效感测时间. 展开更多
关键词 无线传感器网络 分簇路由算法 模糊C均值 算术优化算法 能耗优化
下载PDF
一组加权平均值参数不等式 被引量:1
18
作者 刘小宁 《高等数学研究》 2024年第1期66-68,共3页
采用变量替换,构建了一组加权平均值参数不等式,对Popovic不等式与Rado不等式进行了加权推广,加细了加权算术几何调和平均值不等式.
关键词 加权平均值 参数不等式 算术几何调和平均值不等式
下载PDF
一个涉及等差数列平方根不等式的加强
19
作者 杨克昌 《湖南理工学院学报(自然科学版)》 CAS 2024年第1期7-9,共3页
应用构造求和相消与待定系数法,建立关于等差数列{a_(k)}各项平方根倒数之和Σ_(k=m)^(n)1/√a_(k)的上、下限估计,加强了涉及等差数列的若干已有结论.
关键词 等差数列 平方根 不等式 加强
下载PDF
基于约束区间算法的模糊优化问题的Karush-Kuhn-Tucker条件
20
作者 任咏红 王锐 李达臣 《辽宁师范大学学报(自然科学版)》 CAS 2024年第1期1-9,共9页
主要研究带有不等式约束的模糊优化问题,利用截集构建了与原问题等价的区间值优化问题,基于约束区间算法(CIA)将所得区间值优化问题转为等价的非线性优化问题,从而达到了去模糊化的目的.首先,定义了带有模糊系数函数截集的导数,并利用Za... 主要研究带有不等式约束的模糊优化问题,利用截集构建了与原问题等价的区间值优化问题,基于约束区间算法(CIA)将所得区间值优化问题转为等价的非线性优化问题,从而达到了去模糊化的目的.首先,定义了带有模糊系数函数截集的导数,并利用Zadeh分解定理给出模糊函数的导数概念.其次,在正线性无关约束规范下,建立了模糊优化问题的Karush-Kuhn-Tucker(KKT)条件.最后,利用KKT条件求解具体的模糊优化问题. 展开更多
关键词 模糊优化 截集 KKT条件 约束区间算法
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部