Based on the principle formula for the four-component strainmeters, we can directly obtain the specific plane strain, shear strain and azimuthal angle of the principal strain, and the maximum and minimum principal str...Based on the principle formula for the four-component strainmeters, we can directly obtain the specific plane strain, shear strain and azimuthal angle of the principal strain, and the maximum and minimum principal strains calculated afterwards are the indirect result. The problems of practicality of the sensitivity coefficients A and B of plane strain and shear strain are then discussed. Based on this idea, we analyzed the observation data of several four-component borehole strainmeters near the epicenter of the Yiliang M_S5.7 earthquake in 2012 and the Ludian M_S6.5 earthquake in 2014 in the Zhaotong area, Yunnan Province. The results show that the analysis based on the perspective of plane strain and shear strain has an obviously better effect than that based on the component readings, and can directly peel off the respective abnormality of the plane strain and shear strain. In addition, the correlation coefficient curves between measured data of two plane strains show significant anomalies which often occur several days before and during the earthquake.展开更多
Strainmeters have been used to detect earthquake precursory anomalies in many countries. An innovated four-component strainmeter with four sensing units set at 45 degrees intervals, named SKZ strainmeter, was develope...Strainmeters have been used to detect earthquake precursory anomalies in many countries. An innovated four-component strainmeter with four sensing units set at 45 degrees intervals, named SKZ strainmeter, was developed and used in China. The design, with a few unique features, allows high-sensitivity monitoring of the regime of the crustal strain field, as well as the self-consistencies of the instrument. One of the most difficult problems in the earthquake precursory investigation is to efficiently detect anomalies from large amount of data. Pattern recognition of waveforms is widely used, but it is time-consuming and relies more or less investigator’s experience and decision. In this study, the consistency factors of the paired components were firstly shown to be utilized to detect anomalies possibly related with imminent earthquakes. Here, rather than using the consistency factors, the correlation coefficients of the two orthogonal strain data were used to detect. SKZ strainmeters have been installed at more than ten sites in China, exhibited high efficiency and reliability in precursory monitoring since. Anomalous variations from a few stations during two recent earthquakes in south China were analyzed. During normal stages, diurnal earth tides could be clearly observed with very little urban noises. Though the consistency factors may have near constant bias, their correlation coefficients remain near 1.0, greater than 0.99. During the imminent preparatory stage of earthquake occurrence, non-planar strain may appear and the correlation coefficients drop noticeably. The analysis showed that the correlation coefficient between the two orthogonal components is a useful parameter in post-processing of the strain data to detect precursory anomalies. The resultant resolving power is shown to be some one-order larger compared with previous methods.展开更多
In 2004, China's digital seismic observation network project began to deploy 40 sets YRY-4 four-component borehole strainmeters in order to monitor earthquake preparation process. The paper describes observed solid t...In 2004, China's digital seismic observation network project began to deploy 40 sets YRY-4 four-component borehole strainmeters in order to monitor earthquake preparation process. The paper describes observed solid tidal strain discreteness and tidal factor anisotropy, analyzes the reliability of observational data and discusses the cause for this phenomenon. After getting rid of interferences, the network, in two years practice, has observed several pre-seismic strain anomalies at stations close to epicenters especially in the Wenchuan Ms8.0 megaquake. It shows that this borehole strainmeter network is capable of monitoring seismogenic process.展开更多
At a sampling rate of 100 samples per second,the YRY-4 four-gauge borehole strainmeters(FGBS) are capable of recording transient strains caused by seismic waves such as P and S waves or strain seismograms. At such a...At a sampling rate of 100 samples per second,the YRY-4 four-gauge borehole strainmeters(FGBS) are capable of recording transient strains caused by seismic waves such as P and S waves or strain seismograms. At such a high sampling rate, data from the YRY-4 strainmeters demonstrate fairly satisfactory self-consistency. The strain tensor seismograms demonstrate the senses of motion of P waves, that is, the type of seismic wave travels in the direction of the maximum normal strain change. The observed strain patterns of S waves significantly differ from those of P waves and should contain information about the source mechanism. Spectrum analysis shows that the strain seismograms are consistent with conventional broadband seismograms from the same site.展开更多
Borehole strain observation is playing an increasingly important role in the study on the crustal movements. It has been used by many countries such as China, USA, Japan, Peru, Australia, South Africa, Iceland and It...Borehole strain observation is playing an increasingly important role in the study on the crustal movements. It has been used by many countries such as China, USA, Japan, Peru, Australia, South Africa, Iceland and Italy, in re- search fields of plate tectonics, earthquake, volcanic eruption, dam safety, oil field subsidence, mining collapse and so on. Borehole strainmeter has been improved rapidly and tends to get more and more components included in one probe. Based on observations by this kind of instruments, studies on seismic strain step, slow earthquake, earthquake precursor and volcanic eruption forecasting have made remarkable achievements. In the coming years, borehole strain observation is going to become one major geodetic means, together with GPS and InSAR.展开更多
基金sponsored by the Central Level Scientific Research Institutes of Basic R&D Special Fund Business of the Institute of Crustal Dynamics,CEA(ZDJ2017-25)
文摘Based on the principle formula for the four-component strainmeters, we can directly obtain the specific plane strain, shear strain and azimuthal angle of the principal strain, and the maximum and minimum principal strains calculated afterwards are the indirect result. The problems of practicality of the sensitivity coefficients A and B of plane strain and shear strain are then discussed. Based on this idea, we analyzed the observation data of several four-component borehole strainmeters near the epicenter of the Yiliang M_S5.7 earthquake in 2012 and the Ludian M_S6.5 earthquake in 2014 in the Zhaotong area, Yunnan Province. The results show that the analysis based on the perspective of plane strain and shear strain has an obviously better effect than that based on the component readings, and can directly peel off the respective abnormality of the plane strain and shear strain. In addition, the correlation coefficient curves between measured data of two plane strains show significant anomalies which often occur several days before and during the earthquake.
文摘Strainmeters have been used to detect earthquake precursory anomalies in many countries. An innovated four-component strainmeter with four sensing units set at 45 degrees intervals, named SKZ strainmeter, was developed and used in China. The design, with a few unique features, allows high-sensitivity monitoring of the regime of the crustal strain field, as well as the self-consistencies of the instrument. One of the most difficult problems in the earthquake precursory investigation is to efficiently detect anomalies from large amount of data. Pattern recognition of waveforms is widely used, but it is time-consuming and relies more or less investigator’s experience and decision. In this study, the consistency factors of the paired components were firstly shown to be utilized to detect anomalies possibly related with imminent earthquakes. Here, rather than using the consistency factors, the correlation coefficients of the two orthogonal strain data were used to detect. SKZ strainmeters have been installed at more than ten sites in China, exhibited high efficiency and reliability in precursory monitoring since. Anomalous variations from a few stations during two recent earthquakes in south China were analyzed. During normal stages, diurnal earth tides could be clearly observed with very little urban noises. Though the consistency factors may have near constant bias, their correlation coefficients remain near 1.0, greater than 0.99. During the imminent preparatory stage of earthquake occurrence, non-planar strain may appear and the correlation coefficients drop noticeably. The analysis showed that the correlation coefficient between the two orthogonal components is a useful parameter in post-processing of the strain data to detect precursory anomalies. The resultant resolving power is shown to be some one-order larger compared with previous methods.
基金supported by National Science Commission of China(No.1978-002)China Earthquake Administration(No.1982-220)
文摘In 2004, China's digital seismic observation network project began to deploy 40 sets YRY-4 four-component borehole strainmeters in order to monitor earthquake preparation process. The paper describes observed solid tidal strain discreteness and tidal factor anisotropy, analyzes the reliability of observational data and discusses the cause for this phenomenon. After getting rid of interferences, the network, in two years practice, has observed several pre-seismic strain anomalies at stations close to epicenters especially in the Wenchuan Ms8.0 megaquake. It shows that this borehole strainmeter network is capable of monitoring seismogenic process.
基金supported by the Special Fund for Earthquake Research in the Public Interest(No.201108009)
文摘At a sampling rate of 100 samples per second,the YRY-4 four-gauge borehole strainmeters(FGBS) are capable of recording transient strains caused by seismic waves such as P and S waves or strain seismograms. At such a high sampling rate, data from the YRY-4 strainmeters demonstrate fairly satisfactory self-consistency. The strain tensor seismograms demonstrate the senses of motion of P waves, that is, the type of seismic wave travels in the direction of the maximum normal strain change. The observed strain patterns of S waves significantly differ from those of P waves and should contain information about the source mechanism. Spectrum analysis shows that the strain seismograms are consistent with conventional broadband seismograms from the same site.
基金National Natural Science Foundation of China (40374011) and Joint Seismological Foundation of China (1040037).
文摘Borehole strain observation is playing an increasingly important role in the study on the crustal movements. It has been used by many countries such as China, USA, Japan, Peru, Australia, South Africa, Iceland and Italy, in re- search fields of plate tectonics, earthquake, volcanic eruption, dam safety, oil field subsidence, mining collapse and so on. Borehole strainmeter has been improved rapidly and tends to get more and more components included in one probe. Based on observations by this kind of instruments, studies on seismic strain step, slow earthquake, earthquake precursor and volcanic eruption forecasting have made remarkable achievements. In the coming years, borehole strain observation is going to become one major geodetic means, together with GPS and InSAR.