Propagation stability of non-paraxial beam in nonlinear Kerr media is investigated with a linear stability method. Both theoretical analysis and numerical simulation show that modulation instability (MI) gain spectrum...Propagation stability of non-paraxial beam in nonlinear Kerr media is investigated with a linear stability method. Both theoretical analysis and numerical simulation show that modulation instability (MI) gain spectrum has three different distribution features determined by the times of incident power p0 and the non-paraxial parameter a. Furthermore, the corresponding criterion is put forward to distinguish the three different distributions. Key words non-paraxial beam - modulation instability(MI) - gain spectrum - Kerr media PASC 2001 42.65-k Project supported by the National Natural Science Foundation of China(Grant No. 60177020)展开更多
A low-threshold random laser with one mirror and feedback is investigated in the PMMA film containing rhodamine 590 and TiO2 nano-particles. Incoherent and coherent laser emission is observed. Effect of particle conce...A low-threshold random laser with one mirror and feedback is investigated in the PMMA film containing rhodamine 590 and TiO2 nano-particles. Incoherent and coherent laser emission is observed. Effect of particle concentration on light emission is explored, and the optimum particle concentration is obtained. Optical microscopy and scanning probe microscopy are used to investigate the film structure, and the principle of incoherent and coherent laser is analysed.展开更多
The random laser (RL) based on organic Rhodamine 6G (R6G) laser- dye and Titanium dioxide (TiO2) suspended nanoparticles have been prepared with polymethylmethacrylate (PMMA) as a host. Both liquid and spray-coated ho...The random laser (RL) based on organic Rhodamine 6G (R6G) laser- dye and Titanium dioxide (TiO2) suspended nanoparticles have been prepared with polymethylmethacrylate (PMMA) as a host. Both liquid and spray-coated homogeneous film samples of 22.4 μm - 30.1 μm thickness range were use. Optimum concentrations have been determined depending on the normal fluorescence spectra which give evidence that the laser dye provides amplification and TiO2 nanoparticles as scatter center. At the optimum concentrations, results of the random laser (RL) under second harmonic Nd: YAG laser ex-citation show that the values of bandwidth at full width half-maximum (FWHM) and the threshold energy are about 9 nm and 15 mJ respectively, which represent the minimum value for the liquid samples in the current research. Correspondly, these values become 14 nm and 15 mJ for film sample. The broadening that can be attributed to the concentration quenching of a laser dye at high concentration levels has been observed.展开更多
文摘Propagation stability of non-paraxial beam in nonlinear Kerr media is investigated with a linear stability method. Both theoretical analysis and numerical simulation show that modulation instability (MI) gain spectrum has three different distribution features determined by the times of incident power p0 and the non-paraxial parameter a. Furthermore, the corresponding criterion is put forward to distinguish the three different distributions. Key words non-paraxial beam - modulation instability(MI) - gain spectrum - Kerr media PASC 2001 42.65-k Project supported by the National Natural Science Foundation of China(Grant No. 60177020)
文摘A low-threshold random laser with one mirror and feedback is investigated in the PMMA film containing rhodamine 590 and TiO2 nano-particles. Incoherent and coherent laser emission is observed. Effect of particle concentration on light emission is explored, and the optimum particle concentration is obtained. Optical microscopy and scanning probe microscopy are used to investigate the film structure, and the principle of incoherent and coherent laser is analysed.
文摘The random laser (RL) based on organic Rhodamine 6G (R6G) laser- dye and Titanium dioxide (TiO2) suspended nanoparticles have been prepared with polymethylmethacrylate (PMMA) as a host. Both liquid and spray-coated homogeneous film samples of 22.4 μm - 30.1 μm thickness range were use. Optimum concentrations have been determined depending on the normal fluorescence spectra which give evidence that the laser dye provides amplification and TiO2 nanoparticles as scatter center. At the optimum concentrations, results of the random laser (RL) under second harmonic Nd: YAG laser ex-citation show that the values of bandwidth at full width half-maximum (FWHM) and the threshold energy are about 9 nm and 15 mJ respectively, which represent the minimum value for the liquid samples in the current research. Correspondly, these values become 14 nm and 15 mJ for film sample. The broadening that can be attributed to the concentration quenching of a laser dye at high concentration levels has been observed.