高压直挂电池储能系统(battery energy storage system,BESS)采用H桥电路串联的方法升高电压后接入电网,将电池簇分散接入级联H桥变换器的直流侧,具有高度模块化的结构,对比低压方案具有单机容量大、效率高、响应速度快等明显优势。高...高压直挂电池储能系统(battery energy storage system,BESS)采用H桥电路串联的方法升高电压后接入电网,将电池簇分散接入级联H桥变换器的直流侧,具有高度模块化的结构,对比低压方案具有单机容量大、效率高、响应速度快等明显优势。高压直挂BESS若能兼具无功补偿能力,实现系统四象限运行,将具有更大的成本优势和经济效益。电池簇接单相H桥变换器的结构,使得系统运行在高比例无功补偿工况时,电池簇电流在一个二倍基频的周期中会出现两次反向,导致电池运行在高频充放电的工况,这会对电池寿命和电池状态监测造成较大的影响。为解决这一问题,提出一种基于零序电压注入的高比例无功补偿控制方法,避免了二倍基频脉动电流对电池进行高频充放电,再通过优化零序电压的幅值和相位,最大程度上降低对电池的影响。展开更多
To provide a reliable and comprehensive data reference for core geometry design of graphite-moderated and low-enriched uranium fueled molten salt reactors,the influences of geometric parameters on the temperature coef...To provide a reliable and comprehensive data reference for core geometry design of graphite-moderated and low-enriched uranium fueled molten salt reactors,the influences of geometric parameters on the temperature coefficient of reactivity(TCR)at an assembly level were characterized.A four-factor formula was introduced to explain how different reactivity coefficients behave in terms of the fuel salt volume fraction and assembly size.The results show that the fuel salt temperature coefficient(FSTC)is always negative owing to a more negative fuel salt density coefficient in the over-moderated region or a more negative Doppler coefficient in the under-moderated region.Depending on the fuel salt channel spacing,the graphite moderator temperature coefficient(MTC)can be negative or positive.Furthermore,an assembly with a smaller fuel salt channel spacing is more likely to exhibit a negative MTC.As the fuel salt volume fraction increases,the negative FSTC first weakens and then increases,owing to the fuel salt density effect gradually weakening from negative to positive feedback and then decreasing.Meanwhile,the MTC weakens as the thermal utilization coefficient caused by the graphite temperature effect deteriorates.Thus,the negative TCR first weakens and then strengthens,mainly because of the change in the fuel salt density coefficient.As the assembly size increases,the magnitude of the FSTC decreases monotonously owing to a monotonously weakened fuel salt Doppler coefficient,whereas the MTC changes from gradually weakened negative feedback to gradually enhanced positive feedback.Then,the negative TCR weakens.Therefore,to achieve a proper negative TCR,particularly a negative MTC,an assembly with a smaller fuel salt channel spacing in the under-moderated region is strongly recommended.展开更多
文摘高压直挂电池储能系统(battery energy storage system,BESS)采用H桥电路串联的方法升高电压后接入电网,将电池簇分散接入级联H桥变换器的直流侧,具有高度模块化的结构,对比低压方案具有单机容量大、效率高、响应速度快等明显优势。高压直挂BESS若能兼具无功补偿能力,实现系统四象限运行,将具有更大的成本优势和经济效益。电池簇接单相H桥变换器的结构,使得系统运行在高比例无功补偿工况时,电池簇电流在一个二倍基频的周期中会出现两次反向,导致电池运行在高频充放电的工况,这会对电池寿命和电池状态监测造成较大的影响。为解决这一问题,提出一种基于零序电压注入的高比例无功补偿控制方法,避免了二倍基频脉动电流对电池进行高频充放电,再通过优化零序电压的幅值和相位,最大程度上降低对电池的影响。
基金supported by the Youth Innovation Promotion Association CAS (No.2022258)the National Natural Science Foundation of China (No.12175300)+1 种基金the Chinese TMSR Strategic Pioneer Science and Technology Project (No.XDA02010000)the Young Potential Program of Shanghai Institute of Applied Physics,Chinese Academy of Sciences (No.E1550510)。
文摘To provide a reliable and comprehensive data reference for core geometry design of graphite-moderated and low-enriched uranium fueled molten salt reactors,the influences of geometric parameters on the temperature coefficient of reactivity(TCR)at an assembly level were characterized.A four-factor formula was introduced to explain how different reactivity coefficients behave in terms of the fuel salt volume fraction and assembly size.The results show that the fuel salt temperature coefficient(FSTC)is always negative owing to a more negative fuel salt density coefficient in the over-moderated region or a more negative Doppler coefficient in the under-moderated region.Depending on the fuel salt channel spacing,the graphite moderator temperature coefficient(MTC)can be negative or positive.Furthermore,an assembly with a smaller fuel salt channel spacing is more likely to exhibit a negative MTC.As the fuel salt volume fraction increases,the negative FSTC first weakens and then increases,owing to the fuel salt density effect gradually weakening from negative to positive feedback and then decreasing.Meanwhile,the MTC weakens as the thermal utilization coefficient caused by the graphite temperature effect deteriorates.Thus,the negative TCR first weakens and then strengthens,mainly because of the change in the fuel salt density coefficient.As the assembly size increases,the magnitude of the FSTC decreases monotonously owing to a monotonously weakened fuel salt Doppler coefficient,whereas the MTC changes from gradually weakened negative feedback to gradually enhanced positive feedback.Then,the negative TCR weakens.Therefore,to achieve a proper negative TCR,particularly a negative MTC,an assembly with a smaller fuel salt channel spacing in the under-moderated region is strongly recommended.