We propose a scheme for preparing four-particle Greenberger-Horne-Zeilinger states using two identical bimodal cavities, each supports two modes with different frequencies. This scheme is an alternative to another pub...We propose a scheme for preparing four-particle Greenberger-Horne-Zeilinger states using two identical bimodal cavities, each supports two modes with different frequencies. This scheme is an alternative to another published work [Christopher C Gerry 1996 Phys. Rev. A 53 4591]. Comparisons between them are discussed. The fidelity and the probability of success influenced by cavity decay for the generated states are also considered.展开更多
In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second sche...In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.展开更多
A Scheme for teleporting an unknown four-particle entangled state is proposed via entangled swapping. In this scheme, four pairs of entangled particles are used as quantum channel. It is shown that, if the four pairs ...A Scheme for teleporting an unknown four-particle entangled state is proposed via entangled swapping. In this scheme, four pairs of entangled particles are used as quantum channel. It is shown that, if the four pairs of particles are nonmaximally entangled, the teleportation can be successfully realized with certain probability if a receiver adopts some appropriate unitary transformations.展开更多
We propose two schemes for splitting single- and two-qubit states by using four-particle genuine entangled state as the quantum channel. After the sender performs Bell-basis (or three-partite GHZ- basis) measurement...We propose two schemes for splitting single- and two-qubit states by using four-particle genuine entangled state as the quantum channel. After the sender performs Bell-basis (or three-partite GHZ- basis) measurements on her particles, and the cooperators operate single-particle measurements on their particles, the state receiver can reconstruct the original state of the sender by applying the appropriate unitary operation. In particular, in the scheme for splitting two-qubit state, the receiver needs to introduce an auxiliary particle and carries out a C-NOT operation.展开更多
We propose a scheme for generating a genuine four-particle polarisation entangled state |χ^00) that has many interesting entanglement properties and potential applications in quantum information processing. In our ...We propose a scheme for generating a genuine four-particle polarisation entangled state |χ^00) that has many interesting entanglement properties and potential applications in quantum information processing. In our scheme, we use the weak cross-Kerr nonlinear interaction between field-modes and the non-demolition measurement method based on highly efficient homodyne detection, which is feasible under the current experiment conditions.展开更多
We present a scheme for probabilistic remote preparation of the four-particle entangled W state by using four partial entangled two-particle states as the quantum channel. In this scheme, if Alice (sender) performs ...We present a scheme for probabilistic remote preparation of the four-particle entangled W state by using four partial entangled two-particle states as the quantum channel. In this scheme, if Alice (sender) performs four-particle projective measurements and Bob (receiver) adopts some appropriate unitary operation, the remote state preparation can be successfully realized with certain probability. The classical communication cost is also calculated. However, the success probability of preparation can be increased to 1 for four kinds of special states.展开更多
A novel deterministic joint remote preparation scheme of arbitrary four-particle genuine entangled state from one sender to either of two receivers is proposed. Two three-particle Green-Horne-Zeilinger (GHZ) states ...A novel deterministic joint remote preparation scheme of arbitrary four-particle genuine entangled state from one sender to either of two receivers is proposed. Two three-particle Green-Horne-Zeilinger (GHZ) states and one four-particle GHZ state are used as the quantum channel. The presented scheme is realized through orthogonal projective mea-surement of the Hadamard transferred basis and recovery operation Ulijk). Some useful and general measurement bases have been con-structed. The classical communication cost of the presented scheme is also calculated. Our analysis confirms the feasibility and validity of the proposed method, and shows that it has a 100% probability of success in preparation of the target quantum state.展开更多
We propose a quantum error-rejection scheme for direct communication with three-qubit quantum codes based on the direct communication of secret messages without any secret key shared in advance. Given the symmetric an...We propose a quantum error-rejection scheme for direct communication with three-qubit quantum codes based on the direct communication of secret messages without any secret key shared in advance. Given the symmetric and independent errors of the transmitted qubits, our scheme can tolerate a bit of error rate up to 33.1%, thus the protocol is deterministically secure against any eavesdropping attack even in a noisy channel.展开更多
We present a controlled secure quantum dialogue protocol using a non-maximally (pure) entangled Greenberger-Horne-Zeibinger (GHZ) states at first, and then discuss the requirements for a real quantum dialogue. We ...We present a controlled secure quantum dialogue protocol using a non-maximally (pure) entangled Greenberger-Horne-Zeibinger (GHZ) states at first, and then discuss the requirements for a real quantum dialogue. We show that the authorized two users can exchange their secret messages after purifying the non-maximally entangled GHZ states quantum channel unconditionally securely and simultaneously under the control of a third party.展开更多
A scheme for controlled teleportation of an unknown N-qubit entangled GHZ state from the sender Alice to the distant receiver Bob is proposed. And m-qubit GHZ state is sufficient for the task of control by m spatially...A scheme for controlled teleportation of an unknown N-qubit entangled GHZ state from the sender Alice to the distant receiver Bob is proposed. And m-qubit GHZ state is sufficient for the task of control by m spatially- separated supervisors. Conditioned on the local operations executed by all participants, Bob can faithfully restore the original state by performing relevant unitary transformations with the aid of some classical message about measurement results. Anyone's absence will absolutely lead to the failure of teleportation.展开更多
We propose a scheme to generate polarization-entangled multiphoton Greenberger-Horne^Zeilinger (GHZ) states based on weak cross-Kerr nonlinearity and subsequent homodyne measurement. It can also be generalized to pr...We propose a scheme to generate polarization-entangled multiphoton Greenberger-Horne^Zeilinger (GHZ) states based on weak cross-Kerr nonlinearity and subsequent homodyne measurement. It can also be generalized to produce maximally N-qubit entangled states. The success probabilities of our schemes are almost equal to 1.展开更多
In order to transmit secure messages, a quantum secure direct communication protocol based on extended three-particle GHZ state was presented, in which the extended three-particle GHZ state was used to detect eavesdro...In order to transmit secure messages, a quantum secure direct communication protocol based on extended three-particle GHZ state was presented, in which the extended three-particle GHZ state was used to detect eavesdroppers. In the security analysis, the method of the entropy theory is introduced, and three detection strategies are compared quantitatively by using the constraint between the information eavesdroppers can obtain and the interference introduced. If the eavesdroppers intend to obtain all inforrmtion, the detection rate of the original "Ping-pong" protocol is 50% ; the second protocol used two particles of EPR pair as detection particles is also 50%; while the presented protocol is 58%. At last, the security of the proposed protocol is discussed. The analysis results indicate that the protocol in this paper is more secure than the other two.展开更多
This paper proposes a simple scheme for generating a three-atom GHZ state via cavity quantum electrodynamics (QED). The task can be achieved through the interaction between two EPR states, which can be prepared easi...This paper proposes a simple scheme for generating a three-atom GHZ state via cavity quantum electrodynamics (QED). The task can be achieved through the interaction between two EPR states, which can be prepared easily with current technology. In this scheme, the cavity field is only virtually excited during the interaction process, and no quantum information transfer between the atoms and the cavity is required. Thus it greatly prolongs the efficient decoherent time. Moreover, this scheme is also applicable for generating an N-atom GHZ state.展开更多
An N-qubit Greenberger–Horne–Zeilinger(GHZ) state has many applications in various quantum information tasks and can be realized in different experimental schemes. A GHZ diagonal state evolves to another GHZ diagona...An N-qubit Greenberger–Horne–Zeilinger(GHZ) state has many applications in various quantum information tasks and can be realized in different experimental schemes. A GHZ diagonal state evolves to another GHZ diagonal state in independent parallel Pauli channels. We give the explicit expression of the resultant GHZ diagonal state in terms of the initial state and channel parameters. If the initial state is a pure N qubit GHZ state or a three-qubit GHZ diagonal state admits a condition, the full separability criterion of the Pauli noisy state is equivalent to positive partial transpose(PPT)criterion. Thus the fully separable condition follows.展开更多
We propose an efficient scheme for realizing quantum dense coding with three-particle GHZ state in separated low-Q cavities. In this paper, the GHZ state is first prepared with three atoms trapped, respectively, in th...We propose an efficient scheme for realizing quantum dense coding with three-particle GHZ state in separated low-Q cavities. In this paper, the GHZ state is first prepared with three atoms trapped, respectively, in three spatial separated cavities. Meanwhile, with the assistance of a coherent optical pulse and X-quadrature homodyne measurement, we can im- plement quantum dense coding with three-particle GHZ state with a higher probability. Our scheme can also be generalized to realize N-particle quantum dense coding.展开更多
This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state t...This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.展开更多
In this scheme, N non-maximally entangled particle pairs are used as quantum channel to teleport an unknown N-particle entangled GHZ state via entanglement swapping. In order to realize this teleportation, the sender ...In this scheme, N non-maximally entangled particle pairs are used as quantum channel to teleport an unknown N-particle entangled GHZ state via entanglement swapping. In order to realize this teleportation, the sender Alice operates Bell-state measurement on particles belonging to herself. Then she informs the results to the receiver Bob through classical communication. According to the results, Bob operates corresponding transformation to reconstruct the initial state. The advantage of this scheme is that it needs only one common unitary matrix for Alice's different results, which has a more general meaning. As a special case, teleporting an unknown three-particle entangled GHZ state is proposed.展开更多
We propose two schemes to concentrate unknown nonmaximally tripartite GHZ entangled states via linear optical elements. The finial maximally entangled states obtained from our schemes are shared by two or three partie...We propose two schemes to concentrate unknown nonmaximally tripartite GHZ entangled states via linear optical elements. The finial maximally entangled states obtained from our schemes are shared by two or three parties. Our schemes only need polarizing beam splitters and single-photon detectors. In addition, the schemes can be demonstrated within current experimental technology.展开更多
Quantum private comparison is an important topic in quantum cryptography.Recently,the idea of semi-quantumness has been often used in designing private comparison protocol,which allows some of the participants to rema...Quantum private comparison is an important topic in quantum cryptography.Recently,the idea of semi-quantumness has been often used in designing private comparison protocol,which allows some of the participants to remain classical.In this paper,we propose a semi quantum private comparison scheme based on Greenberge-Horne-Zeilinger(GHZ)class states,which allows two classical participants to compare the equality of their private secret with the help of a quantum third party(server).In the proposed protocol,server is semi-honest who will follow the protocol honestly,but he may try to learn additional information from the protocol execution.The classical participants’activities are restricted to either measuring a quantum state or reflecting it in the classical basis{0,1}.In addition,security and efficiency of the proposed schemes have been discussed.展开更多
In this paper, we propose a physical scheme to concentrate non-maximally entangled atomic pure states by using atomic collision in a far-off-resonant cavity. The most distinctive advantage of our scheme is that the no...In this paper, we propose a physical scheme to concentrate non-maximally entangled atomic pure states by using atomic collision in a far-off-resonant cavity. The most distinctive advantage of our scheme is that the non-maximally entangled atoms may be far from or near each other and their degree of entanglement can be maximally amplified. The photon-number-dependent parts in the effective Hamiltonian are cancelled with the assistance of a strong classical field, thus the scheme is insensitive to both the cavity decay and the thermal field.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10225421 and 10674025), and the Natural Science Foundation of Fujian Province, China (Grant No 2006J0235).
文摘We propose a scheme for preparing four-particle Greenberger-Horne-Zeilinger states using two identical bimodal cavities, each supports two modes with different frequencies. This scheme is an alternative to another published work [Christopher C Gerry 1996 Phys. Rev. A 53 4591]. Comparisons between them are discussed. The fidelity and the probability of success influenced by cavity decay for the generated states are also considered.
文摘In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.
文摘A Scheme for teleporting an unknown four-particle entangled state is proposed via entangled swapping. In this scheme, four pairs of entangled particles are used as quantum channel. It is shown that, if the four pairs of particles are nonmaximally entangled, the teleportation can be successfully realized with certain probability if a receiver adopts some appropriate unitary transformations.
文摘We propose two schemes for splitting single- and two-qubit states by using four-particle genuine entangled state as the quantum channel. After the sender performs Bell-basis (or three-partite GHZ- basis) measurements on her particles, and the cooperators operate single-particle measurements on their particles, the state receiver can reconstruct the original state of the sender by applying the appropriate unitary operation. In particular, in the scheme for splitting two-qubit state, the receiver needs to introduce an auxiliary particle and carries out a C-NOT operation.
基金supported by the National Natural Science Foundation of China (Grant No.60978009 )the National Basic Research Program of China (Grant Nos.2009CB929604 and 2007CB925204)
文摘We propose a scheme for generating a genuine four-particle polarisation entangled state |χ^00) that has many interesting entanglement properties and potential applications in quantum information processing. In our scheme, we use the weak cross-Kerr nonlinear interaction between field-modes and the non-demolition measurement method based on highly efficient homodyne detection, which is feasible under the current experiment conditions.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060357003
文摘We present a scheme for probabilistic remote preparation of the four-particle entangled W state by using four partial entangled two-particle states as the quantum channel. In this scheme, if Alice (sender) performs four-particle projective measurements and Bob (receiver) adopts some appropriate unitary operation, the remote state preparation can be successfully realized with certain probability. The classical communication cost is also calculated. However, the success probability of preparation can be increased to 1 for four kinds of special states.
基金supported by the National Natural Science Foundation of China under Grants No. 61100205, No. 61100208the Project of the Fundamental Research Funds for the Central Universities under Grant No. 2013RC0307
文摘A novel deterministic joint remote preparation scheme of arbitrary four-particle genuine entangled state from one sender to either of two receivers is proposed. Two three-particle Green-Horne-Zeilinger (GHZ) states and one four-particle GHZ state are used as the quantum channel. The presented scheme is realized through orthogonal projective mea-surement of the Hadamard transferred basis and recovery operation Ulijk). Some useful and general measurement bases have been con-structed. The classical communication cost of the presented scheme is also calculated. Our analysis confirms the feasibility and validity of the proposed method, and shows that it has a 100% probability of success in preparation of the target quantum state.
基金supported partly by the National Natural Science Foundation of China (Grant Nos 10774163, 10804132 and 10747167)the Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Committee (CQ CSTC) (Grant No2008BB0152)partly by the National Major Fundamental Research Program of China (Grant No 2006CB921203)
文摘We propose a quantum error-rejection scheme for direct communication with three-qubit quantum codes based on the direct communication of secret messages without any secret key shared in advance. Given the symmetric and independent errors of the transmitted qubits, our scheme can tolerate a bit of error rate up to 33.1%, thus the protocol is deterministically secure against any eavesdropping attack even in a noisy channel.
基金The project supported by National Natural Science Foundation of China under Grant No. 10575017
文摘We present a controlled secure quantum dialogue protocol using a non-maximally (pure) entangled Greenberger-Horne-Zeibinger (GHZ) states at first, and then discuss the requirements for a real quantum dialogue. We show that the authorized two users can exchange their secret messages after purifying the non-maximally entangled GHZ states quantum channel unconditionally securely and simultaneously under the control of a third party.
基金The project supported by Natural Science Foundation of Jiangsu Province under Grant No. 04KJB140119 and the Specialized Research Fund from the Doctoral Programm of Higher Education under Grant No. 20050285002
文摘A scheme for controlled teleportation of an unknown N-qubit entangled GHZ state from the sender Alice to the distant receiver Bob is proposed. And m-qubit GHZ state is sufficient for the task of control by m spatially- separated supervisors. Conditioned on the local operations executed by all participants, Bob can faithfully restore the original state by performing relevant unitary transformations with the aid of some classical message about measurement results. Anyone's absence will absolutely lead to the failure of teleportation.
基金supported by the National Natural Science Foundation of China (Grant No. 11074002)the Doctoral Foundation of the Ministry of Education of China (Grant No. 20103401110003)the Personal Development Foundation of Anhui Province ofChina (Grant No. 2008Z018)
文摘We propose a scheme to generate polarization-entangled multiphoton Greenberger-Horne^Zeilinger (GHZ) states based on weak cross-Kerr nonlinearity and subsequent homodyne measurement. It can also be generalized to produce maximally N-qubit entangled states. The success probabilities of our schemes are almost equal to 1.
基金Acknowledgements The project was supported by the Specialized Research Found for the Doctoral Program of Higher Education of China under Grant No. 20060013007 the National Natural Science Foundation of Beijing under Caant No. 4092029 and the National Natural Science Foundation of China under Grant No. 61100205, No. 60873001.
文摘In order to transmit secure messages, a quantum secure direct communication protocol based on extended three-particle GHZ state was presented, in which the extended three-particle GHZ state was used to detect eavesdroppers. In the security analysis, the method of the entropy theory is introduced, and three detection strategies are compared quantitatively by using the constraint between the information eavesdroppers can obtain and the interference introduced. If the eavesdroppers intend to obtain all inforrmtion, the detection rate of the original "Ping-pong" protocol is 50% ; the second protocol used two particles of EPR pair as detection particles is also 50%; while the presented protocol is 58%. At last, the security of the proposed protocol is discussed. The analysis results indicate that the protocol in this paper is more secure than the other two.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574001) and the Program of the Education Department of Anhui Province (Grant No 2004kj029).
文摘This paper proposes a simple scheme for generating a three-atom GHZ state via cavity quantum electrodynamics (QED). The task can be achieved through the interaction between two EPR states, which can be prepared easily with current technology. In this scheme, the cavity field is only virtually excited during the interaction process, and no quantum information transfer between the atoms and the cavity is required. Thus it greatly prolongs the efficient decoherent time. Moreover, this scheme is also applicable for generating an N-atom GHZ state.
基金supported by the National Natural Science Foundation of China(Grant No.11375152)
文摘An N-qubit Greenberger–Horne–Zeilinger(GHZ) state has many applications in various quantum information tasks and can be realized in different experimental schemes. A GHZ diagonal state evolves to another GHZ diagonal state in independent parallel Pauli channels. We give the explicit expression of the resultant GHZ diagonal state in terms of the initial state and channel parameters. If the initial state is a pure N qubit GHZ state or a three-qubit GHZ diagonal state admits a condition, the full separability criterion of the Pauli noisy state is equivalent to positive partial transpose(PPT)criterion. Thus the fully separable condition follows.
基金supported by the National Natural Science Foundation of China(Grant Nos.11074002 and 61275119)the Doctoral Foundation of the Ministry of Education of China(Grant No.20103401110003)the Natural Science Research Project of Education Department of Anhui Province,China(Grant Nos.KJ2013A205,KJ2011ZD07,and KJ2012Z309)
文摘We propose an efficient scheme for realizing quantum dense coding with three-particle GHZ state in separated low-Q cavities. In this paper, the GHZ state is first prepared with three atoms trapped, respectively, in three spatial separated cavities. Meanwhile, with the assistance of a coherent optical pulse and X-quadrature homodyne measurement, we can im- plement quantum dense coding with three-particle GHZ state with a higher probability. Our scheme can also be generalized to realize N-particle quantum dense coding.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.
基金The project supported by the Natural Science Foundation of Jiangsu Province of China under Grant No. Q1108404.
文摘In this scheme, N non-maximally entangled particle pairs are used as quantum channel to teleport an unknown N-particle entangled GHZ state via entanglement swapping. In order to realize this teleportation, the sender Alice operates Bell-state measurement on particles belonging to herself. Then she informs the results to the receiver Bob through classical communication. According to the results, Bob operates corresponding transformation to reconstruct the initial state. The advantage of this scheme is that it needs only one common unitary matrix for Alice's different results, which has a more general meaning. As a special case, teleporting an unknown three-particle entangled GHZ state is proposed.
基金The project supported by the Natural Science Foundation of the Education Department of Anhui Province under Grant Nos. 2006kj070A and 2006kj057B, and the Talent Foundation of Anhui University
文摘We propose two schemes to concentrate unknown nonmaximally tripartite GHZ entangled states via linear optical elements. The finial maximally entangled states obtained from our schemes are shared by two or three parties. Our schemes only need polarizing beam splitters and single-photon detectors. In addition, the schemes can be demonstrated within current experimental technology.
基金supported by the National Natural Science Foundation of China(Grant No.61572086)Major Project of Education Department in Sichuan(Grant No.18ZA0109)Web Culture Project Sponsored by the Humanities and Social Science Research Base of the Sichuan Provincial Education Department(Grant No.WLWH18-22).
文摘Quantum private comparison is an important topic in quantum cryptography.Recently,the idea of semi-quantumness has been often used in designing private comparison protocol,which allows some of the participants to remain classical.In this paper,we propose a semi quantum private comparison scheme based on Greenberge-Horne-Zeilinger(GHZ)class states,which allows two classical participants to compare the equality of their private secret with the help of a quantum third party(server).In the proposed protocol,server is semi-honest who will follow the protocol honestly,but he may try to learn additional information from the protocol execution.The classical participants’activities are restricted to either measuring a quantum state or reflecting it in the classical basis{0,1}.In addition,security and efficiency of the proposed schemes have been discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025).
文摘In this paper, we propose a physical scheme to concentrate non-maximally entangled atomic pure states by using atomic collision in a far-off-resonant cavity. The most distinctive advantage of our scheme is that the non-maximally entangled atoms may be far from or near each other and their degree of entanglement can be maximally amplified. The photon-number-dependent parts in the effective Hamiltonian are cancelled with the assistance of a strong classical field, thus the scheme is insensitive to both the cavity decay and the thermal field.