A class of graph invariants referred to today as topological indices are inefficient progressively acknowledged by scientific experts and others to be integral assets in the depiction of structural phenomena.The struc...A class of graph invariants referred to today as topological indices are inefficient progressively acknowledged by scientific experts and others to be integral assets in the depiction of structural phenomena.The structure of an interconnection network can be represented by a graph.In the network,vertices represent the processor nodes and edges represent the links between the processor nodes.Graph invariants play a vital feature in graph theory and distinguish the structural properties of graphs and networks.A topological descriptor is a numerical total related to a structure that portray the topology of structure and is invariant under structure automorphism.There are various uses of graph theory in the field of basic science.The main notable utilization of a topological descriptor in science was by Wiener in the investigation of paraffin breaking points.In this paper we study the topological descriptor of a newly design hexagon star network.More preciously,we have computed variation of the Randic0 R0,fourth Zagreb M4,fifth Zagreb M5,geometric-arithmetic GA;atom-bond connectivity ABC;harmonic H;symmetric division degree SDD;first redefined Zagreb,second redefined Zagreb,third redefined Zagreb,augmented Zagreb AZI,Albertson A;Irregularity measures,Reformulated Zagreb,and forgotten topological descriptors for hexagon star network.In the analysis of the quantitative structure property relationships(QSPRs)and the quantitative structure activity relationships(QSARs),graph invariants are important tools to approximate and predicate the properties of the biological and chemical compounds.We also gave the numerical and graphical representations comparisons of our different results.展开更多
A fiber-based, star-shaped joint time and frequency dissemination scheme is demonstrated. By working in cooperation with the existing commercial telecommunication network. Our scheme enables the frequency, time, and d...A fiber-based, star-shaped joint time and frequency dissemination scheme is demonstrated. By working in cooperation with the existing commercial telecommunication network. Our scheme enables the frequency, time, and digital data networks to be integrated together and could represent an ideal option of interconnection among scientific institutions.The compensation functions of the time and frequency transfer scheme are set at the client nodes. The complexity of the central node is thus reduced, and future expansion by the addition of further branches will be accomplished more easily.During a performance test in which the ambient temperature fluctuation is 30℃/day, timing signal dissemination stability is achieved to be approximately ±50 ps along 25-km-long fiber spools. After calibration, a timing signal synchronization accuracy of 100 ps is also realized. The proposed scheme offers an option of the construction of large-scale fiber-based frequency and time transfer networks.展开更多
An amorphous,colorless,and highly transparent star network polymer with a pentaerythritol core linking four PEG-block polymeric arms was synthesized from the poly(ethylene glycol)(PEG),pentaerythritol,and dichlorometh...An amorphous,colorless,and highly transparent star network polymer with a pentaerythritol core linking four PEG-block polymeric arms was synthesized from the poly(ethylene glycol)(PEG),pentaerythritol,and dichloromethane by Williamson reaction.FTIR and ~1H-NMR measurement demonstrated that the polymer repeating units were C[CH_2-OCH_2O-(CH_2CH_2O)_m-CH_2O-(CH_2CH_2O)_n-CH_2O]_4.The polymer host held well mechanical properties for pentaerythritol cross-linking.The gel polymer electrolytes based on Lithium pe...展开更多
In this paper, we will explain the relevance of the starant graphs, graphs created by us in the year of 2002. They were basically circulant graphs with a star graph that connects to all the vertices of the circulant g...In this paper, we will explain the relevance of the starant graphs, graphs created by us in the year of 2002. They were basically circulant graphs with a star graph that connects to all the vertices of the circulant graphs from inside of them, but they did not exist as a separate object of study in the year of 2002, as for all we knew. We now know that they can be used to model even social networking interactions, and they do that job better than any other graph we could be trying to use there. With the development of our mathematical tools, lots of conclusions will be made much more believable and therefore will become much more likely to get support from the relevant industries when attached to new queries.展开更多
For all optical Wavelength Division Multiplexing (WDM) network based on G.653 fibers, we investigate the quality factor deterioration due to combined nonlinear effects and Amplified spontaneous emission (ASE) noise fo...For all optical Wavelength Division Multiplexing (WDM) network based on G.653 fibers, we investigate the quality factor deterioration due to combined nonlinear effects and Amplified spontaneous emission (ASE) noise for system parameters based on ITU-T Recommendation G.692. The investigation: (a) emphasizes on stimulated Raman scattering (SRS) and four wave mixing (FWM) effects which are the dominant nonlinearities known to limit WDM system performance and (b) accounts for beating between nonlinearities and beating between ASE noise and nonlinearities. Using the proposed model, performance of the worst affected channels due to SRS and FWM is compared and the results indicate that the worst affected channel due to SRS performs better and hence must be preferred for reliable and efficient transmission over the worst affected channel due to FWM. Further, the results suggest that to achieve a desired error rate (quality factor);there exists an optimal value of channel spacing for a given number of channels. The proposed theoretical model is also validated through extensive simulations over Rsoft OptSimTM simulator and the two sets of results are found to match, indicating that the proposed model accurately calculates the quality factor of the all optical WDM network.展开更多
The concept of local s-countablity is introduced, and the relations between locally s-countable collections and star-countable collections are discussed.
The equation of state(EOS)of dense nuclear matter is a key factor for determining the internal structure and properties of neutron stars.However,the EOS of high-density nuclear matter has great uncertainty,mainly beca...The equation of state(EOS)of dense nuclear matter is a key factor for determining the internal structure and properties of neutron stars.However,the EOS of high-density nuclear matter has great uncertainty,mainly because terrestrial nuclear experiments cannot reproduce matter as dense as that in the inner core of a neutron star.Fortunately,continuous improvements in astronomical observations of neutron stars provide the opportunity to inversely constrain the EOS of high-density nuclear matter.Several methods have been proposed to implement this inverse constraint,including the Bayesian analysis algorithm,the Lindblom’s approach,and so on.Neural network algorithm is an effective method developed in recent years.By employing a set of isospin-dependent parametric EOSs as the training sample of a neural network algorithm,we set up an effective way to reconstruct the EOS with relative accuracy using a few mass-radius data.Based on the obtained neural network algorithms and according to the NICER observations on masses and radii of neutron stars with assumed precision,we obtain the inversely constrained EOS and further calculate the corresponding macroscopic properties of the neutron star.The results are basically consistent with the constraint on EOS in Huth et al.[Nature 606,276(2022)]based on Bayesian analysis.Moreover,the results show that even though the neural network algorithm was obtained using the finite parameterized EOS as the training set,it is valid for any rational parameter combination of the parameterized EOS model.展开更多
文摘A class of graph invariants referred to today as topological indices are inefficient progressively acknowledged by scientific experts and others to be integral assets in the depiction of structural phenomena.The structure of an interconnection network can be represented by a graph.In the network,vertices represent the processor nodes and edges represent the links between the processor nodes.Graph invariants play a vital feature in graph theory and distinguish the structural properties of graphs and networks.A topological descriptor is a numerical total related to a structure that portray the topology of structure and is invariant under structure automorphism.There are various uses of graph theory in the field of basic science.The main notable utilization of a topological descriptor in science was by Wiener in the investigation of paraffin breaking points.In this paper we study the topological descriptor of a newly design hexagon star network.More preciously,we have computed variation of the Randic0 R0,fourth Zagreb M4,fifth Zagreb M5,geometric-arithmetic GA;atom-bond connectivity ABC;harmonic H;symmetric division degree SDD;first redefined Zagreb,second redefined Zagreb,third redefined Zagreb,augmented Zagreb AZI,Albertson A;Irregularity measures,Reformulated Zagreb,and forgotten topological descriptors for hexagon star network.In the analysis of the quantitative structure property relationships(QSPRs)and the quantitative structure activity relationships(QSARs),graph invariants are important tools to approximate and predicate the properties of the biological and chemical compounds.We also gave the numerical and graphical representations comparisons of our different results.
基金supported by the National Key Scientific Instrument and Equipment Development Project,China(Grant No.2013YQ09094303)the Program of International Science and Technology Cooperation,China(Grant No.2016YFE0100200)
文摘A fiber-based, star-shaped joint time and frequency dissemination scheme is demonstrated. By working in cooperation with the existing commercial telecommunication network. Our scheme enables the frequency, time, and digital data networks to be integrated together and could represent an ideal option of interconnection among scientific institutions.The compensation functions of the time and frequency transfer scheme are set at the client nodes. The complexity of the central node is thus reduced, and future expansion by the addition of further branches will be accomplished more easily.During a performance test in which the ambient temperature fluctuation is 30℃/day, timing signal dissemination stability is achieved to be approximately ±50 ps along 25-km-long fiber spools. After calibration, a timing signal synchronization accuracy of 100 ps is also realized. The proposed scheme offers an option of the construction of large-scale fiber-based frequency and time transfer networks.
文摘An amorphous,colorless,and highly transparent star network polymer with a pentaerythritol core linking four PEG-block polymeric arms was synthesized from the poly(ethylene glycol)(PEG),pentaerythritol,and dichloromethane by Williamson reaction.FTIR and ~1H-NMR measurement demonstrated that the polymer repeating units were C[CH_2-OCH_2O-(CH_2CH_2O)_m-CH_2O-(CH_2CH_2O)_n-CH_2O]_4.The polymer host held well mechanical properties for pentaerythritol cross-linking.The gel polymer electrolytes based on Lithium pe...
文摘In this paper, we will explain the relevance of the starant graphs, graphs created by us in the year of 2002. They were basically circulant graphs with a star graph that connects to all the vertices of the circulant graphs from inside of them, but they did not exist as a separate object of study in the year of 2002, as for all we knew. We now know that they can be used to model even social networking interactions, and they do that job better than any other graph we could be trying to use there. With the development of our mathematical tools, lots of conclusions will be made much more believable and therefore will become much more likely to get support from the relevant industries when attached to new queries.
文摘For all optical Wavelength Division Multiplexing (WDM) network based on G.653 fibers, we investigate the quality factor deterioration due to combined nonlinear effects and Amplified spontaneous emission (ASE) noise for system parameters based on ITU-T Recommendation G.692. The investigation: (a) emphasizes on stimulated Raman scattering (SRS) and four wave mixing (FWM) effects which are the dominant nonlinearities known to limit WDM system performance and (b) accounts for beating between nonlinearities and beating between ASE noise and nonlinearities. Using the proposed model, performance of the worst affected channels due to SRS and FWM is compared and the results indicate that the worst affected channel due to SRS performs better and hence must be preferred for reliable and efficient transmission over the worst affected channel due to FWM. Further, the results suggest that to achieve a desired error rate (quality factor);there exists an optimal value of channel spacing for a given number of channels. The proposed theoretical model is also validated through extensive simulations over Rsoft OptSimTM simulator and the two sets of results are found to match, indicating that the proposed model accurately calculates the quality factor of the all optical WDM network.
基金Foundation item:The NSF(10171043,10271026)of China
文摘The concept of local s-countablity is introduced, and the relations between locally s-countable collections and star-countable collections are discussed.
基金Supported by the National Natural Science Foundation of China(12375144,11975101)the Natural Science Foundation of Guangdong Province,China(2022A1515011552,2020A151501820)。
文摘The equation of state(EOS)of dense nuclear matter is a key factor for determining the internal structure and properties of neutron stars.However,the EOS of high-density nuclear matter has great uncertainty,mainly because terrestrial nuclear experiments cannot reproduce matter as dense as that in the inner core of a neutron star.Fortunately,continuous improvements in astronomical observations of neutron stars provide the opportunity to inversely constrain the EOS of high-density nuclear matter.Several methods have been proposed to implement this inverse constraint,including the Bayesian analysis algorithm,the Lindblom’s approach,and so on.Neural network algorithm is an effective method developed in recent years.By employing a set of isospin-dependent parametric EOSs as the training sample of a neural network algorithm,we set up an effective way to reconstruct the EOS with relative accuracy using a few mass-radius data.Based on the obtained neural network algorithms and according to the NICER observations on masses and radii of neutron stars with assumed precision,we obtain the inversely constrained EOS and further calculate the corresponding macroscopic properties of the neutron star.The results are basically consistent with the constraint on EOS in Huth et al.[Nature 606,276(2022)]based on Bayesian analysis.Moreover,the results show that even though the neural network algorithm was obtained using the finite parameterized EOS as the training set,it is valid for any rational parameter combination of the parameterized EOS model.