Wavelength 1064 nm is one of the most widely used laser wavelengths in industries and science. The high-precision measurement of the refractive index of optical materials at 1064 nm is significant for improving the op...Wavelength 1064 nm is one of the most widely used laser wavelengths in industries and science. The high-precision measurement of the refractive index of optical materials at 1064 nm is significant for improving the optical design. We study the direct measurement of refractive index at 1064nm of lasers, including cMcium fluoride (CaF2), fused silica and zinc selenide (ZnSe), whose refractive indices cover a large range from 1.42847 to 2.48272. The measurement system is built based on the quasi-common-path Nd:YAG laser feedback interferometry. The thickness can be measured simultaneously with the refractive index. The results demonstrate that the system has absolute uncertainties of ~10-5 and ~10-4 mm in refractive index and thickness measurement, respectively.展开更多
Aim Interactive multiple model(IMM) algorithm was introduced into two? stage estimation to improve the estimating accuracy for system position and velocity.Methods The state estimation was carried out in mixed coor...Aim Interactive multiple model(IMM) algorithm was introduced into two? stage estimation to improve the estimating accuracy for system position and velocity.Methods The state estimation was carried out in mixed coordinates according to the nonlinear measure equation, a generalized interactive acceleration compensation(IAC) algorithm in mixed coordinate was presented. Results Simulation result shows the estimation accuracy is improved through changing measure equation in polar coordinates. Conclusion The estimation accuracy for position and velocity estimation, has been improved greatly, and the proposed algorithm has the advantage of less calculating time comparing with other multiple model methods.展开更多
We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the se...We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the sensitivity of the sensor can be orders of magnitude higher than that of aconventional sensor, and high quality factor is not critical in it. Moreover, by optimizing the length of the feedback waveguide to be equal to the perimeter of the ring, the measurement range of the proposed sensor is twice as much as that of the conventional sensor in the weak coupling case.展开更多
The dominant error source of mobile terminal location in wireless sensor networks (WSNs) is the non-line-of-sight (NLOS) propagation error. Among the algorithms proposed to mitigate the influence of NLOS propagati...The dominant error source of mobile terminal location in wireless sensor networks (WSNs) is the non-line-of-sight (NLOS) propagation error. Among the algorithms proposed to mitigate the influence of NLOS propagation error, residual test (RT) is an efficient one, however with high computational complexity (CC). An improved algorithm that memorizes the light of sight (LOS) range measurements (RMs) identified memorize LOS range measurements identified residual test (MLSI-RT) is presented in this paper to address this problem. The MLSI-RT is based on the assumption that when all RMs are from LOS propagations, the normalized residual follows the central Chi-Square distribution while for NLOS cases it is non-central. This study can reduce the CC by more than 90%.展开更多
For determining the accuracy of a calorimeter over the instrument’s entire measuring range,a novel method has been established.For this new approach,(a)benzoic acid(C_(6)H_(5)CO_(2)H) as a certified reference materia...For determining the accuracy of a calorimeter over the instrument’s entire measuring range,a novel method has been established.For this new approach,(a)benzoic acid(C_(6)H_(5)CO_(2)H) as a certified reference material(CRM),(b)SiO_(2) and(c)a mixture of CRM benzoic acid and SiO_(2) have been used.To illustrate the essential difference between 1)the novel analytical method for control of the entire measurement range and 2)the calorimeter calibration,both applications of benzoic acid(BA)have been demonstrated.An experimental result showed that BA was successfully used to check the whole calorimeter measurement range.The results also showed that the same new method was successfully applied to determine the limit of detection and quantification.A new instrument testing process and a new measurement technique have thus been established.In this way,the cost of using CRM to control the accuracy of measuring the entire measuring range of the calorimeter,as shown in this paper,is minimized.The requirements of the ISO/IEC 17025:2017 standard are satisfied.ISO/IEC 17025:2017,together with ISO 9001:2015(quality management systems),ISO 14001:2015(relate to environmental protection)and ISO45001:2018(occupational safety),constitute an integrated quality system by which a testing laboratory may also accredit.展开更多
Radio Frequency (RF) switch circuit is the basic part of microwave devices and systems. The non-linearity distortion figure is necessary in the field of large dynamic range of signal. This letter analyzes the basic sw...Radio Frequency (RF) switch circuit is the basic part of microwave devices and systems. The non-linearity distortion figure is necessary in the field of large dynamic range of signal. This letter analyzes the basic switch circuit and its inter-modulation, and studies in detail the measurement methods and systems of RF switch intercept point. It has provided cascaded simulation testing methods, which can accurately measure the PF switch, of which the second or third order intercept point value is above 75dB and 60dB, respectively. As the testing results are consistent with the theoretical analyses, it proves that the validity of the method satisfies the requirements of large scaled linearity measurement in engineering.展开更多
<div style="text-align:justify;"> We propose a novel scheme, based on digital-heterodyne optical phase-locked loop with whole-fiber circuit, to dynamically measure the free-spectral-range of a fiber re...<div style="text-align:justify;"> We propose a novel scheme, based on digital-heterodyne optical phase-locked loop with whole-fiber circuit, to dynamically measure the free-spectral-range of a fiber resonator. The optical phase-locked loop is established with a differential frequency-modulation module consists of a pair of acousto-optic modulators. The resonance-tracking loop is derived with the Pound-Drever-Hall technique for locking the heterodyne frequency of the OPLL on the frequency difference between adjacent resonance modes. A stable locking accuracy of about 7 × 10<sup>?9</sup> and a dynamic locking accuracy of about 5 × 10<sup>?8</sup> are achieved with the FSR of 8.155 MHz, indicating a bias stability of the resonator fiber optic gyro of about 0.1?/h with 10 Hz bandwidth. In addition, the thermal drift coefficient of the FSR is measured as 0.1 Hz/?C. This shows remarkable potential for realizing advanced optical measurement systems, such as the resonant fiber optic gyro, and so on. </div>展开更多
A new distributed fusion method of radar/infrared (IR) tracking system based on separation and combination of the measurements is proposed by analyzing the influence of rate measurement. The rate information separat...A new distributed fusion method of radar/infrared (IR) tracking system based on separation and combination of the measurements is proposed by analyzing the influence of rate measurement. The rate information separated from the radar measurements together with measurements of IR form a pseudo vector of IR, and the corresponding filter is designed. The results indicate that the method not only makes a great improvement to the local tracker's performance, but also improves the global tracking precision efficiently.展开更多
An improved measurement algorithm, based upon the theory of two-way time transfer ( TWTT), is proposed to measure satellites with high speeds. The algorithm makes theoretical analyses and corresponding deductions on...An improved measurement algorithm, based upon the theory of two-way time transfer ( TWTT), is proposed to measure satellites with high speeds. The algorithm makes theoretical analyses and corresponding deductions on a relative motion model of two satellites, and eliminates the measurement error caused by the equipment delay when a satellite moves at a high speed. Theoretical analysis and simulation results demonstrate that in comparison with the conventional TWTT algorithm, the proposed algorithm can significantly enhance the measurement accuracy of the inter-satellite ranging and time synchronization, and the algorithm is more effective with the relative velocity between the satellites and transmitting delay becoming larger.展开更多
Water content in output crude oil is hard to measure precisely because of wide range of dielectric coefficient of crude oil caused by injected dehydrating and demulsifying agents.The method to reduce measurement error...Water content in output crude oil is hard to measure precisely because of wide range of dielectric coefficient of crude oil caused by injected dehydrating and demulsifying agents.The method to reduce measurement error of water content in crude oil proposed in this paper is based on switching measuring ranges of on-line water content analyzer automatically.Measuring precision on data collected from oil field and analyzed by in-field operators can be impressively improved by using back propogation (BP) neural network to predict water content in output crude oil.Application results show that the difficulty in accurately measuring water-oil content ratio can be solved effectively through this combination of on-line measuring range automatic switching and real time prediction,as this method has been tested repeatedly on-site in oil fields with satisfactory prediction results.展开更多
A simple method for measuring grating groove density as well as its position and orientation is proposed based on the idea of ERT(Experimental Ray Tracing).Conventional methods only measure grating groove density with...A simple method for measuring grating groove density as well as its position and orientation is proposed based on the idea of ERT(Experimental Ray Tracing).Conventional methods only measure grating groove density with accuracy limited by its rotary stage and goniometer.The method proposed in the paper utilizes linear guides which could be calibrated to much higher accuracy.It is applicable to gratings of arbitrary surface profile or mosaic of a group of various gratings.Various measurement error sources are simulated by the Monte Carlo method and the results show high accuracy capability of grating parameters identification.A verification testing is performed.The accuracy dependency on main configuration parameters is evaluated.A method to expand measurement range by double wavelength is also discussed.展开更多
The reflectometry is a common method used to measure the thickness of thin films. Using a conventional method,its measurable range is limited due to the low resolution of the current spectrometer embedded in the refle...The reflectometry is a common method used to measure the thickness of thin films. Using a conventional method,its measurable range is limited due to the low resolution of the current spectrometer embedded in the reflectometer.We present a simple method, using cubic spline interpolation to resample the spectrum with a high resolution,to extend the measurable transparent film thickness. A large measuring range up to 385 m in optical thickness is achieved with the commonly used system. The numerical calculation and experimental results demonstrate that using the FFT method combined with cubic spline interpolation resampling in reflectrometry, a simple,easy-to-operate, economic measuring system can be achieved with high measuring accuracy and replicability.展开更多
We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacem...We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.展开更多
A new method of increasing the range measure preci- sion by Chirp- Z transform in the level Radar has been put up in this paper. The main assignment of this research is to accom- plish the FFT and Chirp- Z transform. ...A new method of increasing the range measure preci- sion by Chirp- Z transform in the level Radar has been put up in this paper. The main assignment of this research is to accom- plish the FFT and Chirp- Z transform. At the same time, the af- fection of the two range measure methods has been analyzed in this paper. This method can increase both the calculation effi- ciency and range measure precision remarkably by theory calcu- lating and digital emulation.展开更多
In this paper the development of the technology of the laser scanning is summarized.The principles of laser range scanning are introduced.Based on the laser scanning technology and methods,which are investigated by th...In this paper the development of the technology of the laser scanning is summarized.The principles of laser range scanning are introduced.Based on the laser scanning technology and methods,which are investigated by the authors to survey deposit volume,a surveying system is developed and a practical application is performed.It is shown that the laser_scanning technology has obvious advantages such as measurement precision,automation and visualization of observed data in comparison with the traditional methods.As a result,labor intensity is relieved obviously and work efficiency is promoted.展开更多
The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolut...The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolution range profile since this waveform is greatly sensitive to the Doppler shift. The velocity measurement performance of the four styles is analyzed with two pulse trains consisted of positive and negative step frequency waveforms. The velocity of targets can be estimated first coarsely by using the pulse trains with positive-positive step frequency combination, and then fine by positive-negative combination. Simulation results indicate that the method can accomplish the accurate estimation of the velocity with efficient computation and good anti-noise performance and obtain the good HRRP simultaneously.展开更多
The advancement of small satellites is promoting the development of distributed satellite systems,and for the latter,it is essential to coordinate the spatial and temporal relations between mutually visible satellites...The advancement of small satellites is promoting the development of distributed satellite systems,and for the latter,it is essential to coordinate the spatial and temporal relations between mutually visible satellites.By now,dual one-way ranging(DOWR)and two-way time transfer(TWTT)are generally integrated in the same software and hardware system to meet the limitations of small satellites in terms of size,weight and power(SWaP)consumption.However,studies show that pseudo-noise regenerative ranging(PNRR)performs better than DOWR if some advanced implementation technologies are employed.Besides,PNRR has no requirement on time synchronization.To apply PNRR to small satellites,and meanwhile,meet the demand for time difference measurement,we propose the round-way time difference measurement,which can be combined with PNRR to form a new integrated system without exceeding the limits of SWaP.The new integrated system can provide distributed small satellite systems with on-orbit high-accuracy and high-precision distance measurement and time difference measurement in real time.Experimental results show that the precision of ranging is about 1.94 cm,and that of time difference measurement is about 78.4 ps,at the signal to noise ratio of 80 dBHz.展开更多
In order to improve the reliability of hydrogen sensor,a novel strategy for full range of hydrogen sensor fault detection and recovery is proposed in this paper. Three kinds of sensors are integrated to realize the me...In order to improve the reliability of hydrogen sensor,a novel strategy for full range of hydrogen sensor fault detection and recovery is proposed in this paper. Three kinds of sensors are integrated to realize the measurement for full range of hydrogen concentration based on relevance vector machine( RVM). Failure detection of hydrogen sensor is carried out by using the variance detection method. When a sensor fault is detected,the other fault-free sensors can recover the fault data in real-time by using RVM predictor accounting for the relevance of sensor data. Analysis,together with both simulated and experimental results,a full-range hydrogen detection and hydrogen sensor self-validating experiment is presented to demonstrate that the proposed strategy is superior at accuracy and runtime compared with the conventional methods. Results show that the proposed methodology provides a better solution to the full range of hydrogen detection and the reliability improvement of hydrogen sensor.展开更多
In this paper, necessary and sufficient conditions for a closed range composition operator CФ on the general family of holomorphic function spaces F(p,q,s) and more generally on α-Besov type spaces F(p,αp-2,s) ...In this paper, necessary and sufficient conditions for a closed range composition operator CФ on the general family of holomorphic function spaces F(p,q,s) and more generally on α-Besov type spaces F(p,αp-2,s) are given. We give a Carleson measure characterization on F (p, αp - 2, s) spaces, then we indicate how Carleson measures can be used to characterize boundedness and compactness of CФ on F(p,q,s) and F(p,αp- 2,s) spaces.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 61036016the Beijing Higher Education Young Elite Teacher Project under Grant No YETP0086
文摘Wavelength 1064 nm is one of the most widely used laser wavelengths in industries and science. The high-precision measurement of the refractive index of optical materials at 1064 nm is significant for improving the optical design. We study the direct measurement of refractive index at 1064nm of lasers, including cMcium fluoride (CaF2), fused silica and zinc selenide (ZnSe), whose refractive indices cover a large range from 1.42847 to 2.48272. The measurement system is built based on the quasi-common-path Nd:YAG laser feedback interferometry. The thickness can be measured simultaneously with the refractive index. The results demonstrate that the system has absolute uncertainties of ~10-5 and ~10-4 mm in refractive index and thickness measurement, respectively.
文摘Aim Interactive multiple model(IMM) algorithm was introduced into two? stage estimation to improve the estimating accuracy for system position and velocity.Methods The state estimation was carried out in mixed coordinates according to the nonlinear measure equation, a generalized interactive acceleration compensation(IAC) algorithm in mixed coordinate was presented. Results Simulation result shows the estimation accuracy is improved through changing measure equation in polar coordinates. Conclusion The estimation accuracy for position and velocity estimation, has been improved greatly, and the proposed algorithm has the advantage of less calculating time comparing with other multiple model methods.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB327601)
文摘We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the sensitivity of the sensor can be orders of magnitude higher than that of aconventional sensor, and high quality factor is not critical in it. Moreover, by optimizing the length of the feedback waveguide to be equal to the perimeter of the ring, the measurement range of the proposed sensor is twice as much as that of the conventional sensor in the weak coupling case.
基金supported by the State Key Program of National Natural Science of China (Grant No.60532030)the New Century Excellent Talents in University (Grant No.NCET-08-0333)the Natural Science Foundation of Shandong Province (Grant No.Y2007G10)
文摘The dominant error source of mobile terminal location in wireless sensor networks (WSNs) is the non-line-of-sight (NLOS) propagation error. Among the algorithms proposed to mitigate the influence of NLOS propagation error, residual test (RT) is an efficient one, however with high computational complexity (CC). An improved algorithm that memorizes the light of sight (LOS) range measurements (RMs) identified memorize LOS range measurements identified residual test (MLSI-RT) is presented in this paper to address this problem. The MLSI-RT is based on the assumption that when all RMs are from LOS propagations, the normalized residual follows the central Chi-Square distribution while for NLOS cases it is non-central. This study can reduce the CC by more than 90%.
基金the funding by the Ministry of Education and Science,the Republic of Serbia for Registration(No.451-03-68/2022-14/200052)。
文摘For determining the accuracy of a calorimeter over the instrument’s entire measuring range,a novel method has been established.For this new approach,(a)benzoic acid(C_(6)H_(5)CO_(2)H) as a certified reference material(CRM),(b)SiO_(2) and(c)a mixture of CRM benzoic acid and SiO_(2) have been used.To illustrate the essential difference between 1)the novel analytical method for control of the entire measurement range and 2)the calorimeter calibration,both applications of benzoic acid(BA)have been demonstrated.An experimental result showed that BA was successfully used to check the whole calorimeter measurement range.The results also showed that the same new method was successfully applied to determine the limit of detection and quantification.A new instrument testing process and a new measurement technique have thus been established.In this way,the cost of using CRM to control the accuracy of measuring the entire measuring range of the calorimeter,as shown in this paper,is minimized.The requirements of the ISO/IEC 17025:2017 standard are satisfied.ISO/IEC 17025:2017,together with ISO 9001:2015(quality management systems),ISO 14001:2015(relate to environmental protection)and ISO45001:2018(occupational safety),constitute an integrated quality system by which a testing laboratory may also accredit.
文摘Radio Frequency (RF) switch circuit is the basic part of microwave devices and systems. The non-linearity distortion figure is necessary in the field of large dynamic range of signal. This letter analyzes the basic switch circuit and its inter-modulation, and studies in detail the measurement methods and systems of RF switch intercept point. It has provided cascaded simulation testing methods, which can accurately measure the PF switch, of which the second or third order intercept point value is above 75dB and 60dB, respectively. As the testing results are consistent with the theoretical analyses, it proves that the validity of the method satisfies the requirements of large scaled linearity measurement in engineering.
文摘<div style="text-align:justify;"> We propose a novel scheme, based on digital-heterodyne optical phase-locked loop with whole-fiber circuit, to dynamically measure the free-spectral-range of a fiber resonator. The optical phase-locked loop is established with a differential frequency-modulation module consists of a pair of acousto-optic modulators. The resonance-tracking loop is derived with the Pound-Drever-Hall technique for locking the heterodyne frequency of the OPLL on the frequency difference between adjacent resonance modes. A stable locking accuracy of about 7 × 10<sup>?9</sup> and a dynamic locking accuracy of about 5 × 10<sup>?8</sup> are achieved with the FSR of 8.155 MHz, indicating a bias stability of the resonator fiber optic gyro of about 0.1?/h with 10 Hz bandwidth. In addition, the thermal drift coefficient of the FSR is measured as 0.1 Hz/?C. This shows remarkable potential for realizing advanced optical measurement systems, such as the resonant fiber optic gyro, and so on. </div>
基金supported by the National Natural Science Foundation of China (60574022).
文摘A new distributed fusion method of radar/infrared (IR) tracking system based on separation and combination of the measurements is proposed by analyzing the influence of rate measurement. The rate information separated from the radar measurements together with measurements of IR form a pseudo vector of IR, and the corresponding filter is designed. The results indicate that the method not only makes a great improvement to the local tracker's performance, but also improves the global tracking precision efficiently.
基金Supported by the National High Technology Research and Development Program of China(2012AA1406)
文摘An improved measurement algorithm, based upon the theory of two-way time transfer ( TWTT), is proposed to measure satellites with high speeds. The algorithm makes theoretical analyses and corresponding deductions on a relative motion model of two satellites, and eliminates the measurement error caused by the equipment delay when a satellite moves at a high speed. Theoretical analysis and simulation results demonstrate that in comparison with the conventional TWTT algorithm, the proposed algorithm can significantly enhance the measurement accuracy of the inter-satellite ranging and time synchronization, and the algorithm is more effective with the relative velocity between the satellites and transmitting delay becoming larger.
基金Sponsored by the Basic Research Fundation of Beijing Institute of Technology (200705422009)
文摘Water content in output crude oil is hard to measure precisely because of wide range of dielectric coefficient of crude oil caused by injected dehydrating and demulsifying agents.The method to reduce measurement error of water content in crude oil proposed in this paper is based on switching measuring ranges of on-line water content analyzer automatically.Measuring precision on data collected from oil field and analyzed by in-field operators can be impressively improved by using back propogation (BP) neural network to predict water content in output crude oil.Application results show that the difficulty in accurately measuring water-oil content ratio can be solved effectively through this combination of on-line measuring range automatic switching and real time prediction,as this method has been tested repeatedly on-site in oil fields with satisfactory prediction results.
基金the National Natural Science Foundation of China(Grant Nos.11927804 and 11873013)。
文摘A simple method for measuring grating groove density as well as its position and orientation is proposed based on the idea of ERT(Experimental Ray Tracing).Conventional methods only measure grating groove density with accuracy limited by its rotary stage and goniometer.The method proposed in the paper utilizes linear guides which could be calibrated to much higher accuracy.It is applicable to gratings of arbitrary surface profile or mosaic of a group of various gratings.Various measurement error sources are simulated by the Monte Carlo method and the results show high accuracy capability of grating parameters identification.A verification testing is performed.The accuracy dependency on main configuration parameters is evaluated.A method to expand measurement range by double wavelength is also discussed.
基金Supported by the National Natural Science Foundation of China under Grant No 11604115the Educational Commission of Jiangsu Province of China under Grant No 17KJA460004the Huaian Science and Technology Funds under Grant No HAC201701
文摘The reflectometry is a common method used to measure the thickness of thin films. Using a conventional method,its measurable range is limited due to the low resolution of the current spectrometer embedded in the reflectometer.We present a simple method, using cubic spline interpolation to resample the spectrum with a high resolution,to extend the measurable transparent film thickness. A large measuring range up to 385 m in optical thickness is achieved with the commonly used system. The numerical calculation and experimental results demonstrate that using the FFT method combined with cubic spline interpolation resampling in reflectrometry, a simple,easy-to-operate, economic measuring system can be achieved with high measuring accuracy and replicability.
基金the National Science Foundation of China (No.50745020).
文摘We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.
文摘A new method of increasing the range measure preci- sion by Chirp- Z transform in the level Radar has been put up in this paper. The main assignment of this research is to accom- plish the FFT and Chirp- Z transform. At the same time, the af- fection of the two range measure methods has been analyzed in this paper. This method can increase both the calculation effi- ciency and range measure precision remarkably by theory calcu- lating and digital emulation.
文摘In this paper the development of the technology of the laser scanning is summarized.The principles of laser range scanning are introduced.Based on the laser scanning technology and methods,which are investigated by the authors to survey deposit volume,a surveying system is developed and a practical application is performed.It is shown that the laser_scanning technology has obvious advantages such as measurement precision,automation and visualization of observed data in comparison with the traditional methods.As a result,labor intensity is relieved obviously and work efficiency is promoted.
文摘The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolution range profile since this waveform is greatly sensitive to the Doppler shift. The velocity measurement performance of the four styles is analyzed with two pulse trains consisted of positive and negative step frequency waveforms. The velocity of targets can be estimated first coarsely by using the pulse trains with positive-positive step frequency combination, and then fine by positive-negative combination. Simulation results indicate that the method can accomplish the accurate estimation of the velocity with efficient computation and good anti-noise performance and obtain the good HRRP simultaneously.
基金supported by the National Natural Science Foundation of China(61401389).
文摘The advancement of small satellites is promoting the development of distributed satellite systems,and for the latter,it is essential to coordinate the spatial and temporal relations between mutually visible satellites.By now,dual one-way ranging(DOWR)and two-way time transfer(TWTT)are generally integrated in the same software and hardware system to meet the limitations of small satellites in terms of size,weight and power(SWaP)consumption.However,studies show that pseudo-noise regenerative ranging(PNRR)performs better than DOWR if some advanced implementation technologies are employed.Besides,PNRR has no requirement on time synchronization.To apply PNRR to small satellites,and meanwhile,meet the demand for time difference measurement,we propose the round-way time difference measurement,which can be combined with PNRR to form a new integrated system without exceeding the limits of SWaP.The new integrated system can provide distributed small satellite systems with on-orbit high-accuracy and high-precision distance measurement and time difference measurement in real time.Experimental results show that the precision of ranging is about 1.94 cm,and that of time difference measurement is about 78.4 ps,at the signal to noise ratio of 80 dBHz.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61201306 and No.61473095)
文摘In order to improve the reliability of hydrogen sensor,a novel strategy for full range of hydrogen sensor fault detection and recovery is proposed in this paper. Three kinds of sensors are integrated to realize the measurement for full range of hydrogen concentration based on relevance vector machine( RVM). Failure detection of hydrogen sensor is carried out by using the variance detection method. When a sensor fault is detected,the other fault-free sensors can recover the fault data in real-time by using RVM predictor accounting for the relevance of sensor data. Analysis,together with both simulated and experimental results,a full-range hydrogen detection and hydrogen sensor self-validating experiment is presented to demonstrate that the proposed strategy is superior at accuracy and runtime compared with the conventional methods. Results show that the proposed methodology provides a better solution to the full range of hydrogen detection and the reliability improvement of hydrogen sensor.
文摘In this paper, necessary and sufficient conditions for a closed range composition operator CФ on the general family of holomorphic function spaces F(p,q,s) and more generally on α-Besov type spaces F(p,αp-2,s) are given. We give a Carleson measure characterization on F (p, αp - 2, s) spaces, then we indicate how Carleson measures can be used to characterize boundedness and compactness of CФ on F(p,q,s) and F(p,αp- 2,s) spaces.