The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly d...The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly distributing torques to minimize the power consumption,the driving range of 4WID-EV can be effectively improved.This paper proposes a model predictive control(MPC)-based torque distribution scheme,which minimizes the power consumption of 4WID-EVs while guaranteeing its tracking performance of planar motions.By incorporating the motor model considering iron losses,the optimal torque distribution can be achieved without an additional torque controller.Also,for this reason,the proposed control scheme is computationally efficient,since the power consumption term to be optimized,which is expressed as the product of the motor voltages and currents,is much simpler than that derived from the efficiency map.With reasonable simplification and linearization,the MPC problem is converted to a quadratic programming problem,which can be solved efficiently.The simulation results in MATLAB and CarSim co-simulation environments demonstrate that the proposed scheme effectively reduces power consumption with guaranteed tracking performance.展开更多
The enhancement of vehicle handling stability and maneuverability through active and independent rear wheels control is presented. Firstly, the configuration of four-wheel independent steering prototype vehide is intr...The enhancement of vehicle handling stability and maneuverability through active and independent rear wheels control is presented. Firstly, the configuration of four-wheel independent steering prototype vehide is introduced briefly. Then the concrete overall design of the electronic controllers of four wheel independent steering system (4WIS) is formulated in details. Under the control strategy of zero sideslip angle at mass center, the mathematical model of 4WIS is established to deduce the equations of separated rear wheel steering angles. According to these equations, simulation analysis for 4WIS vehicle performances is finished to show that 4WIS vehicle can improve the maneuverability greatly at low speed and increase the handling stability at high speed. Finally, the road test of 4WIS vehide has performed to verify the correctness of simulation and show that compared with the conventional four wheel steering (4WS) vehicle, the 4WIS vehicle not only improves the kinematical harmony but also decreases steering resistance and lighten abrasion of tires.展开更多
Autonomous tracking control is one of the fundamental challenges in the field of robotic autonomous navigation,especially for future intelligent robots.In this paper,an improved pure pursuit control method is proposed...Autonomous tracking control is one of the fundamental challenges in the field of robotic autonomous navigation,especially for future intelligent robots.In this paper,an improved pure pursuit control method is proposed for the path tracking control problem of a four-wheel independent steering robot.Based on the analysis of the four-wheel independent steering model,the kinematic model and the steering geometry model of the robot are established.Then the path tracking control is realized by considering the correlation between the look-ahead distance and the velocity,as well as the lateral error between the robot and the reference path.The experimental results demonstrate that the improved pure pursuit control method has the advantages of small steady-state error,fast response and strong robustness,which can effectively improve the accuracy of path tracking.展开更多
Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to e...Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to enhance the vehicle’s longitudinal and vertical motion control performance.While the nonlinear characteristic of the tire model leads to a relatively heavier computational burden.To facilitate the controller design and ease the load,a half-vehicle dynamics system is built and simplified to the linear-time-varying(LTV)model.Then a model predictive controller is developed by formulating the objective function by comprehensively considering the safety,energy-saving and comfort requirements.The in-wheel motor efficiency and the power loss of tire slip are treated as optimization indices in this work to reduce energy consumption.Finally,the effectiveness of the proposed controller is verified through the rapid-control-prototype(RCP)test.The results demonstrate the enhancement of the energy-saving as well as comfort on the basis of vehicle stability.展开更多
A tomato harvesting robot was developed in this study,which consisted of a four-wheel independent steering system,a 5-DOF harvesting system,a navigation system,and a binocular stereo vision system.The four-wheel indep...A tomato harvesting robot was developed in this study,which consisted of a four-wheel independent steering system,a 5-DOF harvesting system,a navigation system,and a binocular stereo vision system.The four-wheel independent steering system was capable of providing a low-speed steering control of the robot based on Ackerman steering geometry.The proportional-integral-derivative(PID)algorithm was used in the laser navigation control system.The Otsu algorithm and the elliptic template method were used for the automatic recognition of ripe tomatoes,and obstacle avoidance strategies were proposed based on the C-space method.The maximum average absolute error between the set angle and the actual angle was about 0.14°,and the maximum standard deviation was about 0.04°.The laser navigation system was able to rapidly and accurately track the path,with the deviation being less than 8 cm.The load bearing capacity of the mechanical arm was about 1.5 kg.The success rate of the binocular vision system in the recognition of ripe tomatoes was 99.3%.When the distance was less than 600 mm,the positioning error was less than 10 mm.The time needed for recognition of ripe tomatoes and pitching was about 15 s per tomato,with a success rate of about 86%.This study provides some insights into the development and application of tomato harvesting robot used in the greenhouse.展开更多
Estimation of the lateral stability region and torque distribution on steering is very important to improve stability in lateral handling for all wheel drive electric vehicles.Based on the built-nonlinear vehicle dyna...Estimation of the lateral stability region and torque distribution on steering is very important to improve stability in lateral handling for all wheel drive electric vehicles.Based on the built-nonlinear vehicle dynamic model,the lateral stability region of the vehicle related to steering is estimated using Lyapunov function.We obtained stable equilibrium points of non-straight driving according to the estimated lateral stability region and also reconstructed the Lyapunov function matrix,which proved that the closed-loop system composed of yaw rate and lateral velocity is satisfied with negative definite property.In addition,the designed controller dynamically allocates the drive torque in terms of the vertical load and slip rate of the four wheels.The simulation results show that the estimated lateral stability region and the designed controller are satisfactory in handling stability performance against different roads and vehicle parameters.展开更多
基金supported in part by National Natural Science Foundation of China(NSFC)under Project No.51737010.
文摘The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly distributing torques to minimize the power consumption,the driving range of 4WID-EV can be effectively improved.This paper proposes a model predictive control(MPC)-based torque distribution scheme,which minimizes the power consumption of 4WID-EVs while guaranteeing its tracking performance of planar motions.By incorporating the motor model considering iron losses,the optimal torque distribution can be achieved without an additional torque controller.Also,for this reason,the proposed control scheme is computationally efficient,since the power consumption term to be optimized,which is expressed as the product of the motor voltages and currents,is much simpler than that derived from the efficiency map.With reasonable simplification and linearization,the MPC problem is converted to a quadratic programming problem,which can be solved efficiently.The simulation results in MATLAB and CarSim co-simulation environments demonstrate that the proposed scheme effectively reduces power consumption with guaranteed tracking performance.
文摘The enhancement of vehicle handling stability and maneuverability through active and independent rear wheels control is presented. Firstly, the configuration of four-wheel independent steering prototype vehide is introduced briefly. Then the concrete overall design of the electronic controllers of four wheel independent steering system (4WIS) is formulated in details. Under the control strategy of zero sideslip angle at mass center, the mathematical model of 4WIS is established to deduce the equations of separated rear wheel steering angles. According to these equations, simulation analysis for 4WIS vehicle performances is finished to show that 4WIS vehicle can improve the maneuverability greatly at low speed and increase the handling stability at high speed. Finally, the road test of 4WIS vehide has performed to verify the correctness of simulation and show that compared with the conventional four wheel steering (4WS) vehicle, the 4WIS vehicle not only improves the kinematical harmony but also decreases steering resistance and lighten abrasion of tires.
基金Supported by the National Natural Science Foundation of China(61103157)。
文摘Autonomous tracking control is one of the fundamental challenges in the field of robotic autonomous navigation,especially for future intelligent robots.In this paper,an improved pure pursuit control method is proposed for the path tracking control problem of a four-wheel independent steering robot.Based on the analysis of the four-wheel independent steering model,the kinematic model and the steering geometry model of the robot are established.Then the path tracking control is realized by considering the correlation between the look-ahead distance and the velocity,as well as the lateral error between the robot and the reference path.The experimental results demonstrate that the improved pure pursuit control method has the advantages of small steady-state error,fast response and strong robustness,which can effectively improve the accuracy of path tracking.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975118,52025121)Foundation of State Key Laboratory of Automotive Simulation and Control of China(Grant No.20210104)+1 种基金Foundation of State Key Laboratory of Automobile Safety and Energy Saving of China(Grant No.KFZ2201)Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements of China(Grant No.BA2021023).
文摘Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to enhance the vehicle’s longitudinal and vertical motion control performance.While the nonlinear characteristic of the tire model leads to a relatively heavier computational burden.To facilitate the controller design and ease the load,a half-vehicle dynamics system is built and simplified to the linear-time-varying(LTV)model.Then a model predictive controller is developed by formulating the objective function by comprehensively considering the safety,energy-saving and comfort requirements.The in-wheel motor efficiency and the power loss of tire slip are treated as optimization indices in this work to reduce energy consumption.Finally,the effectiveness of the proposed controller is verified through the rapid-control-prototype(RCP)test.The results demonstrate the enhancement of the energy-saving as well as comfort on the basis of vehicle stability.
基金supported by the National 863 planning project of China-digital design and intelligent control technology of agricultural facilities equipment(2013AA102406)the Beijing municipal science and technology project(Z161100004916118).
文摘A tomato harvesting robot was developed in this study,which consisted of a four-wheel independent steering system,a 5-DOF harvesting system,a navigation system,and a binocular stereo vision system.The four-wheel independent steering system was capable of providing a low-speed steering control of the robot based on Ackerman steering geometry.The proportional-integral-derivative(PID)algorithm was used in the laser navigation control system.The Otsu algorithm and the elliptic template method were used for the automatic recognition of ripe tomatoes,and obstacle avoidance strategies were proposed based on the C-space method.The maximum average absolute error between the set angle and the actual angle was about 0.14°,and the maximum standard deviation was about 0.04°.The laser navigation system was able to rapidly and accurately track the path,with the deviation being less than 8 cm.The load bearing capacity of the mechanical arm was about 1.5 kg.The success rate of the binocular vision system in the recognition of ripe tomatoes was 99.3%.When the distance was less than 600 mm,the positioning error was less than 10 mm.The time needed for recognition of ripe tomatoes and pitching was about 15 s per tomato,with a success rate of about 86%.This study provides some insights into the development and application of tomato harvesting robot used in the greenhouse.
基金The National Natural Science Foundation of China(Grant No.51105074)The Foundation of State Key Laboratory of Automotive Safety and Energy,Tsinghua University(Grant No.KF14192)The Fundamental Research Funds for the Central Universities and Jiangsu Province Postgraduate Scientific Research and Innovation Plan Projects(Grant No.KYLX_0103)
文摘Estimation of the lateral stability region and torque distribution on steering is very important to improve stability in lateral handling for all wheel drive electric vehicles.Based on the built-nonlinear vehicle dynamic model,the lateral stability region of the vehicle related to steering is estimated using Lyapunov function.We obtained stable equilibrium points of non-straight driving according to the estimated lateral stability region and also reconstructed the Lyapunov function matrix,which proved that the closed-loop system composed of yaw rate and lateral velocity is satisfied with negative definite property.In addition,the designed controller dynamically allocates the drive torque in terms of the vertical load and slip rate of the four wheels.The simulation results show that the estimated lateral stability region and the designed controller are satisfactory in handling stability performance against different roads and vehicle parameters.