The enhancement of vehicle handling stability and maneuverability through active and independent rear wheels control is presented. Firstly, the configuration of four-wheel independent steering prototype vehide is intr...The enhancement of vehicle handling stability and maneuverability through active and independent rear wheels control is presented. Firstly, the configuration of four-wheel independent steering prototype vehide is introduced briefly. Then the concrete overall design of the electronic controllers of four wheel independent steering system (4WIS) is formulated in details. Under the control strategy of zero sideslip angle at mass center, the mathematical model of 4WIS is established to deduce the equations of separated rear wheel steering angles. According to these equations, simulation analysis for 4WIS vehicle performances is finished to show that 4WIS vehicle can improve the maneuverability greatly at low speed and increase the handling stability at high speed. Finally, the road test of 4WIS vehide has performed to verify the correctness of simulation and show that compared with the conventional four wheel steering (4WS) vehicle, the 4WIS vehicle not only improves the kinematical harmony but also decreases steering resistance and lighten abrasion of tires.展开更多
Autonomous tracking control is one of the fundamental challenges in the field of robotic autonomous navigation,especially for future intelligent robots.In this paper,an improved pure pursuit control method is proposed...Autonomous tracking control is one of the fundamental challenges in the field of robotic autonomous navigation,especially for future intelligent robots.In this paper,an improved pure pursuit control method is proposed for the path tracking control problem of a four-wheel independent steering robot.Based on the analysis of the four-wheel independent steering model,the kinematic model and the steering geometry model of the robot are established.Then the path tracking control is realized by considering the correlation between the look-ahead distance and the velocity,as well as the lateral error between the robot and the reference path.The experimental results demonstrate that the improved pure pursuit control method has the advantages of small steady-state error,fast response and strong robustness,which can effectively improve the accuracy of path tracking.展开更多
The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly d...The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly distributing torques to minimize the power consumption,the driving range of 4WID-EV can be effectively improved.This paper proposes a model predictive control(MPC)-based torque distribution scheme,which minimizes the power consumption of 4WID-EVs while guaranteeing its tracking performance of planar motions.By incorporating the motor model considering iron losses,the optimal torque distribution can be achieved without an additional torque controller.Also,for this reason,the proposed control scheme is computationally efficient,since the power consumption term to be optimized,which is expressed as the product of the motor voltages and currents,is much simpler than that derived from the efficiency map.With reasonable simplification and linearization,the MPC problem is converted to a quadratic programming problem,which can be solved efficiently.The simulation results in MATLAB and CarSim co-simulation environments demonstrate that the proposed scheme effectively reduces power consumption with guaranteed tracking performance.展开更多
The steering characteristic of a four-wheel-steering vehicle is numerically simulated for in-depth research of the handling stability of four-wheel steering. The research results show that the deteriorating tendency o...The steering characteristic of a four-wheel-steering vehicle is numerically simulated for in-depth research of the handling stability of four-wheel steering. The research results show that the deteriorating tendency of the steering stability due to the increase of the vehicle speed is improved obviously in the case of four-wheel steering. The approach of variable steering ratio is discussed. The use of the variable steering ratio can not only raise the steering stability of vechicles at high vehicle speed, but also reduce the dicomfort and steering burden of drivers; and hence is helpful for the subjective evaluation of four-wheel steering vehicles.展开更多
In order to improve the curving performance of the conventional wheelset in sharp curves and resolve the steering ability problem of the independently rotating wheel in large radius curves and tangent lines, a differe...In order to improve the curving performance of the conventional wheelset in sharp curves and resolve the steering ability problem of the independently rotating wheel in large radius curves and tangent lines, a differential cou- pling wheelset (DCW) was developed in this work. The DCW was composed of two independently rotating wheels (IRWs) coupled by a clutch-type limited slip differential. The differential contains a static pre-stress clutch, which could lock both sides of IRWs of the DCW to ensure a good steering performance in curves with large radius and tangent track. In contrast, the clutch could unlock the two IRWs of the DCW in a sharp curve to endue it with the characteristic of an IRW, so that the vehicles can go through the tight curve smoothly. To study the dynamic performance of the DCW, a multi-body dynamic model of single bogie with DCWs was established. The self-centering capability, hunting stability, and self-steering performance on a curved track were analyzed and then compared with those of the conventional wheelset and IRW. Finally, the effect of coupling parameters of the DCW on the dynamic performance was investigated.展开更多
An improvement strategy which controls the shift effort and the power summing planetary gear set of steering clutches and brakes have been proposed based on the dynamic model of synchroniser in order to decrease the w...An improvement strategy which controls the shift effort and the power summing planetary gear set of steering clutches and brakes have been proposed based on the dynamic model of synchroniser in order to decrease the wear of synchroniser inserts, make gear shift easy and reduce the shock noise for a positive independent mechanical split path transmission which attached an auto- matic shift system when shifting. A kinetics model for the process of synchroniser engagement is built and analyzed in the paper. Thus for optimizing the gear shift process which is divided into three phases a model reference fuzzy self-adaption system is adopted. Through a 6 000 km road experiment, the control strategy has proved feasible and dependable.展开更多
This paper presents a fault-tolerant control(FTC)strategy for a four-wheel independent driving electric vehicle suffering steering failure.The method is based on the functional redundancy of driving and braking actuat...This paper presents a fault-tolerant control(FTC)strategy for a four-wheel independent driving electric vehicle suffering steering failure.The method is based on the functional redundancy of driving and braking actuators to recover the vehicle’s steering ability.A dynamic vehicle model is derived with the function of four-wheel driving.A sliding mode controller with a combined sliding surface is employed as a motion controller,allowing the desired vehicle motion to be tracked by the adaptive drivermodel.An extended Kalman filter-based state estimator is adopted to virtually measure the sideslip anglewhile considering the nonlinear tire force.A new allocation strategy,involving two distribution modes of coordination,is designed.In addition,a weight coefficient adjustment strategy is implemented in optimal mode based on the lateral load transfer,thus improving the steering performance.Simulations are conducted to verify the proposed FTC algorithm.The results demonstrate that steering failure can be effectively covered by the functional redundancy of the driving/braking actuators.展开更多
Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to e...Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to enhance the vehicle’s longitudinal and vertical motion control performance.While the nonlinear characteristic of the tire model leads to a relatively heavier computational burden.To facilitate the controller design and ease the load,a half-vehicle dynamics system is built and simplified to the linear-time-varying(LTV)model.Then a model predictive controller is developed by formulating the objective function by comprehensively considering the safety,energy-saving and comfort requirements.The in-wheel motor efficiency and the power loss of tire slip are treated as optimization indices in this work to reduce energy consumption.Finally,the effectiveness of the proposed controller is verified through the rapid-control-prototype(RCP)test.The results demonstrate the enhancement of the energy-saving as well as comfort on the basis of vehicle stability.展开更多
独立轮对作为低地板列车的关键组成部分,其结构导致其导向性能缺失、磨损和噪声等问题,这些问题成为制约低地板列车发展的主要因素。文章通过已有的独立轮对单轴转向架滚动试验台,结合dSPACE系统搭建了快速控制原型(Rapid Control Proto...独立轮对作为低地板列车的关键组成部分,其结构导致其导向性能缺失、磨损和噪声等问题,这些问题成为制约低地板列车发展的主要因素。文章通过已有的独立轮对单轴转向架滚动试验台,结合dSPACE系统搭建了快速控制原型(Rapid Control Prototype,RCP)测试平台,并提出了2种主动导向控制策略,分别开展了独立轮对导向性能验证、Simulink和SIMPACK联合仿真验证,以及主动导向控制策略的半实物仿真台架试验。试验结果表明,独立轮对本身不具备曲线对中能力,当添加主动导向控制后独立轮对能完全无横向偏移。文章所提出的2种主动导向控制策略均能够使采用独立轮对的车辆获得良好的曲线通过性能,在补偿车辆速度和曲线半径的情况下,独立轮对横移量能高效地回复至中心线位置。展开更多
文摘The enhancement of vehicle handling stability and maneuverability through active and independent rear wheels control is presented. Firstly, the configuration of four-wheel independent steering prototype vehide is introduced briefly. Then the concrete overall design of the electronic controllers of four wheel independent steering system (4WIS) is formulated in details. Under the control strategy of zero sideslip angle at mass center, the mathematical model of 4WIS is established to deduce the equations of separated rear wheel steering angles. According to these equations, simulation analysis for 4WIS vehicle performances is finished to show that 4WIS vehicle can improve the maneuverability greatly at low speed and increase the handling stability at high speed. Finally, the road test of 4WIS vehide has performed to verify the correctness of simulation and show that compared with the conventional four wheel steering (4WS) vehicle, the 4WIS vehicle not only improves the kinematical harmony but also decreases steering resistance and lighten abrasion of tires.
基金Supported by the National Natural Science Foundation of China(61103157)。
文摘Autonomous tracking control is one of the fundamental challenges in the field of robotic autonomous navigation,especially for future intelligent robots.In this paper,an improved pure pursuit control method is proposed for the path tracking control problem of a four-wheel independent steering robot.Based on the analysis of the four-wheel independent steering model,the kinematic model and the steering geometry model of the robot are established.Then the path tracking control is realized by considering the correlation between the look-ahead distance and the velocity,as well as the lateral error between the robot and the reference path.The experimental results demonstrate that the improved pure pursuit control method has the advantages of small steady-state error,fast response and strong robustness,which can effectively improve the accuracy of path tracking.
基金supported in part by National Natural Science Foundation of China(NSFC)under Project No.51737010.
文摘The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly distributing torques to minimize the power consumption,the driving range of 4WID-EV can be effectively improved.This paper proposes a model predictive control(MPC)-based torque distribution scheme,which minimizes the power consumption of 4WID-EVs while guaranteeing its tracking performance of planar motions.By incorporating the motor model considering iron losses,the optimal torque distribution can be achieved without an additional torque controller.Also,for this reason,the proposed control scheme is computationally efficient,since the power consumption term to be optimized,which is expressed as the product of the motor voltages and currents,is much simpler than that derived from the efficiency map.With reasonable simplification and linearization,the MPC problem is converted to a quadratic programming problem,which can be solved efficiently.The simulation results in MATLAB and CarSim co-simulation environments demonstrate that the proposed scheme effectively reduces power consumption with guaranteed tracking performance.
文摘The steering characteristic of a four-wheel-steering vehicle is numerically simulated for in-depth research of the handling stability of four-wheel steering. The research results show that the deteriorating tendency of the steering stability due to the increase of the vehicle speed is improved obviously in the case of four-wheel steering. The approach of variable steering ratio is discussed. The use of the variable steering ratio can not only raise the steering stability of vechicles at high vehicle speed, but also reduce the dicomfort and steering burden of drivers; and hence is helpful for the subjective evaluation of four-wheel steering vehicles.
基金supported by the National Key Technology R&D Program of China (No. 2009BAG12A02)the National Basic Research Program of China (No. 2011CB711106)+2 种基金the Program for Innovative Research Team in University (No. IRT1178)the Program for New Century Excellent Talents in University (No. NCET-10-0664)the National Key Technology R&D Program (No. 2009BAG12A01)
文摘In order to improve the curving performance of the conventional wheelset in sharp curves and resolve the steering ability problem of the independently rotating wheel in large radius curves and tangent lines, a differential cou- pling wheelset (DCW) was developed in this work. The DCW was composed of two independently rotating wheels (IRWs) coupled by a clutch-type limited slip differential. The differential contains a static pre-stress clutch, which could lock both sides of IRWs of the DCW to ensure a good steering performance in curves with large radius and tangent track. In contrast, the clutch could unlock the two IRWs of the DCW in a sharp curve to endue it with the characteristic of an IRW, so that the vehicles can go through the tight curve smoothly. To study the dynamic performance of the DCW, a multi-body dynamic model of single bogie with DCWs was established. The self-centering capability, hunting stability, and self-steering performance on a curved track were analyzed and then compared with those of the conventional wheelset and IRW. Finally, the effect of coupling parameters of the DCW on the dynamic performance was investigated.
文摘An improvement strategy which controls the shift effort and the power summing planetary gear set of steering clutches and brakes have been proposed based on the dynamic model of synchroniser in order to decrease the wear of synchroniser inserts, make gear shift easy and reduce the shock noise for a positive independent mechanical split path transmission which attached an auto- matic shift system when shifting. A kinetics model for the process of synchroniser engagement is built and analyzed in the paper. Thus for optimizing the gear shift process which is divided into three phases a model reference fuzzy self-adaption system is adopted. Through a 6 000 km road experiment, the control strategy has proved feasible and dependable.
基金The work was supported by the National Science Foundation of China(51675066)Chongqing Research Program of Basic Research and Frontier Technology(cstc2017jcyjAX0323)Shanghai Aerospace Science and Technology Innovation Foundation(SAST201016).
文摘This paper presents a fault-tolerant control(FTC)strategy for a four-wheel independent driving electric vehicle suffering steering failure.The method is based on the functional redundancy of driving and braking actuators to recover the vehicle’s steering ability.A dynamic vehicle model is derived with the function of four-wheel driving.A sliding mode controller with a combined sliding surface is employed as a motion controller,allowing the desired vehicle motion to be tracked by the adaptive drivermodel.An extended Kalman filter-based state estimator is adopted to virtually measure the sideslip anglewhile considering the nonlinear tire force.A new allocation strategy,involving two distribution modes of coordination,is designed.In addition,a weight coefficient adjustment strategy is implemented in optimal mode based on the lateral load transfer,thus improving the steering performance.Simulations are conducted to verify the proposed FTC algorithm.The results demonstrate that steering failure can be effectively covered by the functional redundancy of the driving/braking actuators.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975118,52025121)Foundation of State Key Laboratory of Automotive Simulation and Control of China(Grant No.20210104)+1 种基金Foundation of State Key Laboratory of Automobile Safety and Energy Saving of China(Grant No.KFZ2201)Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements of China(Grant No.BA2021023).
文摘Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to enhance the vehicle’s longitudinal and vertical motion control performance.While the nonlinear characteristic of the tire model leads to a relatively heavier computational burden.To facilitate the controller design and ease the load,a half-vehicle dynamics system is built and simplified to the linear-time-varying(LTV)model.Then a model predictive controller is developed by formulating the objective function by comprehensively considering the safety,energy-saving and comfort requirements.The in-wheel motor efficiency and the power loss of tire slip are treated as optimization indices in this work to reduce energy consumption.Finally,the effectiveness of the proposed controller is verified through the rapid-control-prototype(RCP)test.The results demonstrate the enhancement of the energy-saving as well as comfort on the basis of vehicle stability.
文摘独立轮对作为低地板列车的关键组成部分,其结构导致其导向性能缺失、磨损和噪声等问题,这些问题成为制约低地板列车发展的主要因素。文章通过已有的独立轮对单轴转向架滚动试验台,结合dSPACE系统搭建了快速控制原型(Rapid Control Prototype,RCP)测试平台,并提出了2种主动导向控制策略,分别开展了独立轮对导向性能验证、Simulink和SIMPACK联合仿真验证,以及主动导向控制策略的半实物仿真台架试验。试验结果表明,独立轮对本身不具备曲线对中能力,当添加主动导向控制后独立轮对能完全无横向偏移。文章所提出的2种主动导向控制策略均能够使采用独立轮对的车辆获得良好的曲线通过性能,在补偿车辆速度和曲线半径的情况下,独立轮对横移量能高效地回复至中心线位置。