In this study, the numerical solution for the Modified Equal Width Wave (MEW) equation is presented using Fourier spectral method that use to discretize the space variable and Leap-frog method scheme for time dependen...In this study, the numerical solution for the Modified Equal Width Wave (MEW) equation is presented using Fourier spectral method that use to discretize the space variable and Leap-frog method scheme for time dependence. Test problems including the single soliton wave motion, interaction of two solitary waves and interaction of three solitary waves will use to validate the proposed method. The three invariants of the motion are evaluated to determine the conservation properties of the generated scheme. Finally, a Maxwellian initial condition pulse is then studied. The L<sub>2</sub> and L<sub>∞</sub> error norms are computed to study the accuracy and the simplicity of the presented method.展开更多
A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite differen...A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported.展开更多
In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimati...In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimation between the spectral approximate solution and the exact solution is obtained.展开更多
The time accuracy of the exponentially accurate Fourier time spectral method(TSM) is examined and compared with a conventional 2nd-order backward difference formula(BDF) method for periodic unsteady flows. In part...The time accuracy of the exponentially accurate Fourier time spectral method(TSM) is examined and compared with a conventional 2nd-order backward difference formula(BDF) method for periodic unsteady flows. In particular, detailed error analysis based on numerical computations is performed on the accuracy of resolving the local pressure coefficient and global integrated force coefficients for smooth subsonic and non-smooth transonic flows with moving shock waves on a pitching airfoil. For smooth subsonic flows, the Fourier TSM method offers a significant accuracy advantage over the BDF method for the prediction of both the local pressure coefficient and integrated force coefficients. For transonic flows where the motion of the discontinuous shock wave contributes significant higherorder harmonic contents to the local pressure fluctuations,a sufficient number of modes must be included before the Fourier TSM provides an advantage over the BDF method.The Fourier TSM, however, still offers better accuracy than the BDF method for integrated force coefficients even for transonic flows. A problem of non-symmetric solutions for symmetric periodic flows due to the use of odd numbers of intervals is uncovered and analyzed. A frequency-searching method is proposed for problems where the frequency is not known a priori. The method is tested on the vortex shedding problem of the flow over a circular cylinder.展开更多
A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L^2-norm is obtained. It improves the result presen...A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L^2-norm is obtained. It improves the result presented by Maday and Quarteroni. A modified Fourier pseudospectral method is also presented, with the same convergence properties as the Fourier spectral method.展开更多
In the author’s recent publications, a parametric system biorthogonal to the corresponding segment of the exponential Fourier system was unusually effective. On its basis, it was discovered that knowledge of a finite...In the author’s recent publications, a parametric system biorthogonal to the corresponding segment of the exponential Fourier system was unusually effective. On its basis, it was discovered that knowledge of a finite number of Fourier coefficients of function f from an infinite-dimensional set of elementary functions allows f to be accurately restored (the phenomenon of over-convergence). Below, parametric biorthogonal systems are constructed for classical trigonometric Fourier series, and the corresponding phenomena of over-convergence are discovered. The decisive role here was played by representing the space L2 as an orthogonal sum of two corresponding subspaces. As a result, fast parallel algorithms for reconstructing a function from its truncated trigonometric Fourier series are proposed. The presented numerical experiments confirm the high efficiency of these convergence accelerations for smooth functions. In conclusion, the main results of the work are summarized, and some prospects for the development and generalization of the proposed approaches are discussed.展开更多
文摘In this study, the numerical solution for the Modified Equal Width Wave (MEW) equation is presented using Fourier spectral method that use to discretize the space variable and Leap-frog method scheme for time dependence. Test problems including the single soliton wave motion, interaction of two solitary waves and interaction of three solitary waves will use to validate the proposed method. The three invariants of the motion are evaluated to determine the conservation properties of the generated scheme. Finally, a Maxwellian initial condition pulse is then studied. The L<sub>2</sub> and L<sub>∞</sub> error norms are computed to study the accuracy and the simplicity of the presented method.
基金the National Natural Science Foundation of China
文摘A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported.
文摘In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimation between the spectral approximate solution and the exact solution is obtained.
基金supported by the State Scholarship Fund of the China Scholarship Council (Grant 2009629129)
文摘The time accuracy of the exponentially accurate Fourier time spectral method(TSM) is examined and compared with a conventional 2nd-order backward difference formula(BDF) method for periodic unsteady flows. In particular, detailed error analysis based on numerical computations is performed on the accuracy of resolving the local pressure coefficient and global integrated force coefficients for smooth subsonic and non-smooth transonic flows with moving shock waves on a pitching airfoil. For smooth subsonic flows, the Fourier TSM method offers a significant accuracy advantage over the BDF method for the prediction of both the local pressure coefficient and integrated force coefficients. For transonic flows where the motion of the discontinuous shock wave contributes significant higherorder harmonic contents to the local pressure fluctuations,a sufficient number of modes must be included before the Fourier TSM provides an advantage over the BDF method.The Fourier TSM, however, still offers better accuracy than the BDF method for integrated force coefficients even for transonic flows. A problem of non-symmetric solutions for symmetric periodic flows due to the use of odd numbers of intervals is uncovered and analyzed. A frequency-searching method is proposed for problems where the frequency is not known a priori. The method is tested on the vortex shedding problem of the flow over a circular cylinder.
基金Project supported by the National Natural Science Foundation of China (No. 60874039)Shanghai Leading Academic Discipline Project (No. J50101)
文摘A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L^2-norm is obtained. It improves the result presented by Maday and Quarteroni. A modified Fourier pseudospectral method is also presented, with the same convergence properties as the Fourier spectral method.
文摘In the author’s recent publications, a parametric system biorthogonal to the corresponding segment of the exponential Fourier system was unusually effective. On its basis, it was discovered that knowledge of a finite number of Fourier coefficients of function f from an infinite-dimensional set of elementary functions allows f to be accurately restored (the phenomenon of over-convergence). Below, parametric biorthogonal systems are constructed for classical trigonometric Fourier series, and the corresponding phenomena of over-convergence are discovered. The decisive role here was played by representing the space L2 as an orthogonal sum of two corresponding subspaces. As a result, fast parallel algorithms for reconstructing a function from its truncated trigonometric Fourier series are proposed. The presented numerical experiments confirm the high efficiency of these convergence accelerations for smooth functions. In conclusion, the main results of the work are summarized, and some prospects for the development and generalization of the proposed approaches are discussed.
基金NSFC(No.10901074)Natural Science Foundation of Jiangxi Province(No.2008GQS0054)+3 种基金Foundation of Department of Education Jiangxi Province(No.GJJ09147)Young Growth Foundation of Jiangxi Normal University(No.3182)Innovation Foundation in 2010 for Graduate Students(No.YJS2010009)Natural Science Foundation of Anhui Province(No.090416227)