The infrared microspectroscopy beamline(BL06B) is a phase Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility(SSRF). The construction and optical alignment of BL06B were completed by the end of 2020. By...The infrared microspectroscopy beamline(BL06B) is a phase Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility(SSRF). The construction and optical alignment of BL06B were completed by the end of 2020. By 2021, it became accessible to users. The synchrotron radiation infrared(SRIR) source included edge radiation(ER) and bending magnet radiation(BMR). The extracted angles in the horizontal and vertical directions were 40 and 20 mrad, respectively. The photon flux, spectral resolution, and focused spot size were measured at the BL06B endstation, and the experimental results were consistent with theoretical calculations. SRIR light has a small divergence angle, high brightness, and a wide wavelength range. As a source of IR microscopy, it can easily focus on a diffraction-limited spatial resolution with a high signal-to-noise ratio(SNR). The BL06B endstation can be applied in a wide range of research fields, including materials, chemistry, biology, geophysics, and pharmacology.展开更多
Over the last 100 years,significant advances have been made in the characterisation of milk composition for dairy cattle improvement programs.Technological progress has enabled a shift from labour intensive,on-farm co...Over the last 100 years,significant advances have been made in the characterisation of milk composition for dairy cattle improvement programs.Technological progress has enabled a shift from labour intensive,on-farm collection and processing of samples that assess yield and fat levels in milk,to large-scale processing of samples through centralised laboratories,with the scope extended to include quantification of other traits.Fourier-transform midinfrared(FT-MIR)spectroscopy has had a significant role in the transformation of milk composition phenotyping,with spectral-based predictions of major milk components already being widely used in milk payment and animal evaluation systems globally.Increasingly,there is interest in analysing the individual FT-MIR wavenumbers,and in utilising the FT-MIR data to predict other novel traits of importance to breeding programs.This includes traits related to the nutritional value of milk,the processability of milk into products such as cheese,and traits relevant to animal health and the environment.The ability to successfully incorporate these traits into breeding programs is dependent on the heritability of the FT-MIR predicted traits,and the genetic correlations between the FT-MIR predicted and actual trait values.Linking FT-MIR predicted traits to the underlying mutations responsible for their variation can be difficult because the phenotypic expression of these traits are a function of a diverse range of molecular and biological mechanisms that can obscure their genetic basis.The individual FT-MIR wavenumbers give insights into the chemical composition of milk and provide an additional layer of granularity that may assist with establishing causal links between the genome and observed phenotypes.Additionally,there are other molecular phenotypes such as those related to the metabolome,chromatin accessibility,and RNA editing that could improve our understanding of the underlying biological systems controlling traits of interest.Here we review topics of importance to phenotyping and genetic applications of FT-MIR spectra datasets,and discuss opportunities for consolidating FT-MIR datasets with other genomic and molecular data sources to improve future dairy cattle breeding programs.展开更多
AIM: To determine if Fourier-transform infrared (FT-IR)spectroscopy of endoscopic biopsies could accurately diagnose gastritis and malignancy.METHODS: A total of 123 gastroscopic samples, including 11 cases of cancero...AIM: To determine if Fourier-transform infrared (FT-IR)spectroscopy of endoscopic biopsies could accurately diagnose gastritis and malignancy.METHODS: A total of 123 gastroscopic samples, including 11 cases of cancerous tissues, 63 cases of chronic atrophic gastritis tissues, 47 cases of chronic superficial gastritis tissues and 2 cases of normal tissues, were obtained from the First Hospital of Xi'an Jiaotong University, China. A modified attenuated total reflectance (ATR) accessory was linked to a WQD-500 FT-IR spectrometer for spectral measurement followed by submission of the samples for pathologic analysis. The spectral characteristics for different types of gastroscopic tissues were summarized and correlated with the corresponding pathologic results.RESULTS: Distinct differences were observed in the FTIR spectra of normal, atrophic gastritis, superficial gastritis and malignant gastric tissues. The sensitivity of FT-IR for detection of gastric cancer, chronic atrophic gastritis and superficial gastritis was 90.9%, 82.5%, 91.5%, and specificity was 97.3%, 91.7%, 89.5% respectively.CONCLUSION: FT-IR spectroscopy can distinguish gastric inflammation from malignancy.展开更多
Cyanobacteria are gram-negative photosynthetic bacteria capable of producing toxins responsible for morbidity and mortality in humans and domestic animals. They are capable of forming concentrated blooms, referred to ...Cyanobacteria are gram-negative photosynthetic bacteria capable of producing toxins responsible for morbidity and mortality in humans and domestic animals. They are capable of forming concentrated blooms, referred to as harmful algal blooms (HABs). Characterization of HABs is necessary to reduce risks from human and animal exposures to toxins. Current methods used to classify cyanobacteria and cyanotoxins have limitations related to time, analyst skills, and cost. Fourier-Transform Infrared Spectroscopy (FTIR) is a potential tool for rapid, robust cyanobacterial classification that is not limited by these factors. To examine the practicality of this method, library screening with default software algorithms was performed on HAB samples, followed by principle component cluster analyses and dendrogram analysis of samples meeting minimum quality requirements. Two tested spectrometers and software packages were successful at distinguishing cyanobacteria from green algae. Principle component cluster analysis and dendrogram analysis also resulted in clear differentiation between cyanobacteria and green algae. While these methods cannot be used independently to fully characterize HABs, they show the potential and practicality of FTIR as a screening tool.展开更多
There are two infrared beamlines at the Shanghai synchrotron radiation facility(SSRF)-BL01B and BL06B.BL01B was the first infrared beamline of the National Facility for Protein Science in Shanghai at SSRF,which is ded...There are two infrared beamlines at the Shanghai synchrotron radiation facility(SSRF)-BL01B and BL06B.BL01B was the first infrared beamline of the National Facility for Protein Science in Shanghai at SSRF,which is dedicated to synchrotron infrared microspectroscopy.It utilizes bending magnet radiation and edge radiation as light sources.Diffraction-limited spatial resolution is reached in the infrared microspectroscopy experiment.BL01B has been in operation for approximately five years since it opened in January 2015.In the past few years,many meaningful results have been published by user groups from various disciplines,such as biomacromolecule materials and pharmaceutical,environmental,and biomedical sciences.In addition,a new infrared beamline station BL06B is under construction,which is optimized for the mid-infrared and far-infrared band.BL06B is equipped with a vacuum-type Fourier transform infrared spectrometer,infrared microscope,custom longworking-distance infrared microscope,infrared scanning near-field optical microscope,and mid-infrared Mueller ellipsometer.The purpose is to serve experiments with high vacuum requirements and spatial resolution experiments,as well as those that are in situ and time-sensitive,such as high-pressure and atomic force microscopy infrared experiments.The station can be used for research in biomaterials,pharmacy,geophysics,nanotechnology,and semiconductor materials.展开更多
The compost products of Camellia oleifera shell/meal mixed at different mass ratios were characterized by Fourier-transform infrared spectroscopy (FTIR) at different composting stages to monitor the structural changes...The compost products of Camellia oleifera shell/meal mixed at different mass ratios were characterized by Fourier-transform infrared spectroscopy (FTIR) at different composting stages to monitor the structural changes of their components. The results showed that the amount of Camellia oleifera meal significantly affected the composting rate of the shell, but did not change the degradation order and decomposition of the related compounds. During the composting process, microorganisms used the highly decomposable carbon source materials, such as proteins and sugars, first to grow and multiply, and then decomposed hemicellulose, cellulose and lignin by oxidative cleavage after these nutrients were consumed to a certain extent. The decomposition products were then condensed into more stable humic acids. The degradation rates of the compounds were directly proportional to the amount of Camellia oleifera?meal. The compounds in Camellia oleifera shell were composted faster with higher amounts of Camellia oleifera meals, resulting in less lignocellulose in the final products.展开更多
The present study establishes a visualization method for the measurement of the distribution and localization of protein/peptide constituents within a single poly-lactide-co-glycolide (PLGA) microsphere using synchrot...The present study establishes a visualization method for the measurement of the distribution and localization of protein/peptide constituents within a single poly-lactide-co-glycolide (PLGA) microsphere using synchrotron radiation based Fourier-transform infrared speciiomlcroscopy (SR-FTIR). The representative infrared wavenumbers specific for protein/peptide (Exenatide) and excipient (PLGA) were identified and chemical maps at the single microsphere level were generated by measuring and plotting the intensity of these specific bands. For quantitative analysis of the distribution within microspheres, Matlab soft are was used to transform the map file into a 3D matrix and the matiix values specific for the drug and excipient were extracted. Comparison of the normalized SR- FM maps of PLGA and Exenatide indicated that PLGA was unit-on-lily distributed, while Exenatide was relatively non-uniformly distributed in the microspheres. In conclusion, SR-FTIR is a rapid, nondestructive and sensitive detection technology to provide the distribution of chemical constituents and functional groups in microparticles and microspheres. (C) 2015 Chinese Pharmaceutical Association and Institute of Materia 'Medico, Chinese Academy of 'Medical Sciences. Production and hosting by Elsevier B.V.展开更多
V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated...V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated using in situ diffuse-reflectance infrared Fourier-transform spectroscopy,temperature-programmed reduction(TPR),X-ray diffraction,and the Brunauer-Emmett-Teller(BET) method.The BET surface area of the triple oxides increased with increasing ZrO2 doping but gradually decreased with increasing WO3 loading.Addition of sufficient WO3 helped to stabilize the pore structure and the combination of WO3 and ZrO2 improved dispersion of all the metal oxides.The mechanisms of reactions using V2O5-9%WO3/TiO2-ZrO2 and V2O5-9%WO3/TiO2were compared by using either a single or mixed gas feed and various pretreatments.The results suggest that both reactions followed the Eley-Ridel mechanism;however,the dominant acid sites,which depended on the addition of WO3 or ZrO2,determined the pathways for NOx reduction,and involved[NH4^+-NO-Bronsted acid site]^* and[NH2-NO-Lewis acid site]^* intermediates,respectively.NH3-TPR and H2-TPR showed that the metal oxides in the catalysts were not reduced by NH3 and O2did not reoxidize the catalyst surfaces but participated in the formation of H2O and NO2.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.12204499 and 62075225)Joint Key Projects of National Natural Science Foundation of China(No.U2032206)+1 种基金CAS Project for Young Scientists in Basic Research(No.YSBR-042)Open Project of State Key Laboratory of Surface Physics at Fudan University(No.KF2022_05).
文摘The infrared microspectroscopy beamline(BL06B) is a phase Ⅱ beamline project at the Shanghai Synchrotron Radiation Facility(SSRF). The construction and optical alignment of BL06B were completed by the end of 2020. By 2021, it became accessible to users. The synchrotron radiation infrared(SRIR) source included edge radiation(ER) and bending magnet radiation(BMR). The extracted angles in the horizontal and vertical directions were 40 and 20 mrad, respectively. The photon flux, spectral resolution, and focused spot size were measured at the BL06B endstation, and the experimental results were consistent with theoretical calculations. SRIR light has a small divergence angle, high brightness, and a wide wavelength range. As a source of IR microscopy, it can easily focus on a diffraction-limited spatial resolution with a high signal-to-noise ratio(SNR). The BL06B endstation can be applied in a wide range of research fields, including materials, chemistry, biology, geophysics, and pharmacology.
基金funded by Livestock Improvement Corporation(LIC)the New Zealand Ministry for Primary Industries,through the Sustainable Food&Fibre Futures programme.
文摘Over the last 100 years,significant advances have been made in the characterisation of milk composition for dairy cattle improvement programs.Technological progress has enabled a shift from labour intensive,on-farm collection and processing of samples that assess yield and fat levels in milk,to large-scale processing of samples through centralised laboratories,with the scope extended to include quantification of other traits.Fourier-transform midinfrared(FT-MIR)spectroscopy has had a significant role in the transformation of milk composition phenotyping,with spectral-based predictions of major milk components already being widely used in milk payment and animal evaluation systems globally.Increasingly,there is interest in analysing the individual FT-MIR wavenumbers,and in utilising the FT-MIR data to predict other novel traits of importance to breeding programs.This includes traits related to the nutritional value of milk,the processability of milk into products such as cheese,and traits relevant to animal health and the environment.The ability to successfully incorporate these traits into breeding programs is dependent on the heritability of the FT-MIR predicted traits,and the genetic correlations between the FT-MIR predicted and actual trait values.Linking FT-MIR predicted traits to the underlying mutations responsible for their variation can be difficult because the phenotypic expression of these traits are a function of a diverse range of molecular and biological mechanisms that can obscure their genetic basis.The individual FT-MIR wavenumbers give insights into the chemical composition of milk and provide an additional layer of granularity that may assist with establishing causal links between the genome and observed phenotypes.Additionally,there are other molecular phenotypes such as those related to the metabolome,chromatin accessibility,and RNA editing that could improve our understanding of the underlying biological systems controlling traits of interest.Here we review topics of importance to phenotyping and genetic applications of FT-MIR spectra datasets,and discuss opportunities for consolidating FT-MIR datasets with other genomic and molecular data sources to improve future dairy cattle breeding programs.
基金Supported by the National Natural Science Foundation of China, No. 30371604 and State Key Project of China, No. 2002CCA01900
文摘AIM: To determine if Fourier-transform infrared (FT-IR)spectroscopy of endoscopic biopsies could accurately diagnose gastritis and malignancy.METHODS: A total of 123 gastroscopic samples, including 11 cases of cancerous tissues, 63 cases of chronic atrophic gastritis tissues, 47 cases of chronic superficial gastritis tissues and 2 cases of normal tissues, were obtained from the First Hospital of Xi'an Jiaotong University, China. A modified attenuated total reflectance (ATR) accessory was linked to a WQD-500 FT-IR spectrometer for spectral measurement followed by submission of the samples for pathologic analysis. The spectral characteristics for different types of gastroscopic tissues were summarized and correlated with the corresponding pathologic results.RESULTS: Distinct differences were observed in the FTIR spectra of normal, atrophic gastritis, superficial gastritis and malignant gastric tissues. The sensitivity of FT-IR for detection of gastric cancer, chronic atrophic gastritis and superficial gastritis was 90.9%, 82.5%, 91.5%, and specificity was 97.3%, 91.7%, 89.5% respectively.CONCLUSION: FT-IR spectroscopy can distinguish gastric inflammation from malignancy.
文摘Cyanobacteria are gram-negative photosynthetic bacteria capable of producing toxins responsible for morbidity and mortality in humans and domestic animals. They are capable of forming concentrated blooms, referred to as harmful algal blooms (HABs). Characterization of HABs is necessary to reduce risks from human and animal exposures to toxins. Current methods used to classify cyanobacteria and cyanotoxins have limitations related to time, analyst skills, and cost. Fourier-Transform Infrared Spectroscopy (FTIR) is a potential tool for rapid, robust cyanobacterial classification that is not limited by these factors. To examine the practicality of this method, library screening with default software algorithms was performed on HAB samples, followed by principle component cluster analyses and dendrogram analysis of samples meeting minimum quality requirements. Two tested spectrometers and software packages were successful at distinguishing cyanobacteria from green algae. Principle component cluster analysis and dendrogram analysis also resulted in clear differentiation between cyanobacteria and green algae. While these methods cannot be used independently to fully characterize HABs, they show the potential and practicality of FTIR as a screening tool.
基金supported by the National Natural Science Foundation of China(Nos.U1732130,U1632273,11505267,and 11605281)
文摘There are two infrared beamlines at the Shanghai synchrotron radiation facility(SSRF)-BL01B and BL06B.BL01B was the first infrared beamline of the National Facility for Protein Science in Shanghai at SSRF,which is dedicated to synchrotron infrared microspectroscopy.It utilizes bending magnet radiation and edge radiation as light sources.Diffraction-limited spatial resolution is reached in the infrared microspectroscopy experiment.BL01B has been in operation for approximately five years since it opened in January 2015.In the past few years,many meaningful results have been published by user groups from various disciplines,such as biomacromolecule materials and pharmaceutical,environmental,and biomedical sciences.In addition,a new infrared beamline station BL06B is under construction,which is optimized for the mid-infrared and far-infrared band.BL06B is equipped with a vacuum-type Fourier transform infrared spectrometer,infrared microscope,custom longworking-distance infrared microscope,infrared scanning near-field optical microscope,and mid-infrared Mueller ellipsometer.The purpose is to serve experiments with high vacuum requirements and spatial resolution experiments,as well as those that are in situ and time-sensitive,such as high-pressure and atomic force microscopy infrared experiments.The station can be used for research in biomaterials,pharmacy,geophysics,nanotechnology,and semiconductor materials.
文摘The compost products of Camellia oleifera shell/meal mixed at different mass ratios were characterized by Fourier-transform infrared spectroscopy (FTIR) at different composting stages to monitor the structural changes of their components. The results showed that the amount of Camellia oleifera meal significantly affected the composting rate of the shell, but did not change the degradation order and decomposition of the related compounds. During the composting process, microorganisms used the highly decomposable carbon source materials, such as proteins and sugars, first to grow and multiply, and then decomposed hemicellulose, cellulose and lignin by oxidative cleavage after these nutrients were consumed to a certain extent. The decomposition products were then condensed into more stable humic acids. The degradation rates of the compounds were directly proportional to the amount of Camellia oleifera?meal. The compounds in Camellia oleifera shell were composted faster with higher amounts of Camellia oleifera meals, resulting in less lignocellulose in the final products.
基金financial support from the National Natural Science Foundation of China (Nos.81273453 and 81430087)
文摘The present study establishes a visualization method for the measurement of the distribution and localization of protein/peptide constituents within a single poly-lactide-co-glycolide (PLGA) microsphere using synchrotron radiation based Fourier-transform infrared speciiomlcroscopy (SR-FTIR). The representative infrared wavenumbers specific for protein/peptide (Exenatide) and excipient (PLGA) were identified and chemical maps at the single microsphere level were generated by measuring and plotting the intensity of these specific bands. For quantitative analysis of the distribution within microspheres, Matlab soft are was used to transform the map file into a 3D matrix and the matiix values specific for the drug and excipient were extracted. Comparison of the normalized SR- FM maps of PLGA and Exenatide indicated that PLGA was unit-on-lily distributed, while Exenatide was relatively non-uniformly distributed in the microspheres. In conclusion, SR-FTIR is a rapid, nondestructive and sensitive detection technology to provide the distribution of chemical constituents and functional groups in microparticles and microspheres. (C) 2015 Chinese Pharmaceutical Association and Institute of Materia 'Medico, Chinese Academy of 'Medical Sciences. Production and hosting by Elsevier B.V.
基金supported by the National Natural Science Foundation of China(51306034)Key Research&Development Projects of Jiangsu Province(BE2015677)the National Basic Research Program of China(2013CB228505)~~
文摘V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated using in situ diffuse-reflectance infrared Fourier-transform spectroscopy,temperature-programmed reduction(TPR),X-ray diffraction,and the Brunauer-Emmett-Teller(BET) method.The BET surface area of the triple oxides increased with increasing ZrO2 doping but gradually decreased with increasing WO3 loading.Addition of sufficient WO3 helped to stabilize the pore structure and the combination of WO3 and ZrO2 improved dispersion of all the metal oxides.The mechanisms of reactions using V2O5-9%WO3/TiO2-ZrO2 and V2O5-9%WO3/TiO2were compared by using either a single or mixed gas feed and various pretreatments.The results suggest that both reactions followed the Eley-Ridel mechanism;however,the dominant acid sites,which depended on the addition of WO3 or ZrO2,determined the pathways for NOx reduction,and involved[NH4^+-NO-Bronsted acid site]^* and[NH2-NO-Lewis acid site]^* intermediates,respectively.NH3-TPR and H2-TPR showed that the metal oxides in the catalysts were not reduced by NH3 and O2did not reoxidize the catalyst surfaces but participated in the formation of H2O and NO2.