The adhesion of single asperity contacting with a rigid flat is investigated. The microcontact model of the deformable asperity is established utilizing fractal geometry, which makes the resuRed adhesion model to rela...The adhesion of single asperity contacting with a rigid flat is investigated. The microcontact model of the deformable asperity is established utilizing fractal geometry, which makes the resuRed adhesion model to relate with the surface characteristics that the asperity belongs to. The Dugdale approximation is utilized to consider the adhesive interaction within and outside the contact area. Then the model for solving the elastic-plastic adhesion of single asperity is presented by combing the Maugis-Dugdale(MD) model. To illustrate the necessity of considering the plastic deformation in microcontact, simulations of the relationship between the adhesive contact load and the interference of the asperity are performed. The result shows that the presented model is more suitable for the solution of the elastic-plastic microcontact of spherical asperity due to intermolecular adhesive interactions.展开更多
基金China Post Doctor Science Foundation(No. 20070420748)Fujian Provincial Natural Science Foundation of China(E0610032).
文摘The adhesion of single asperity contacting with a rigid flat is investigated. The microcontact model of the deformable asperity is established utilizing fractal geometry, which makes the resuRed adhesion model to relate with the surface characteristics that the asperity belongs to. The Dugdale approximation is utilized to consider the adhesive interaction within and outside the contact area. Then the model for solving the elastic-plastic adhesion of single asperity is presented by combing the Maugis-Dugdale(MD) model. To illustrate the necessity of considering the plastic deformation in microcontact, simulations of the relationship between the adhesive contact load and the interference of the asperity are performed. The result shows that the presented model is more suitable for the solution of the elastic-plastic microcontact of spherical asperity due to intermolecular adhesive interactions.