We present a one-dimensional dynamic model of polydisperse granular mixture with the fractal characteristic of the particle size distribution, in which the particles are subject to inelastic mutual collisions and are ...We present a one-dimensional dynamic model of polydisperse granular mixture with the fractal characteristic of the particle size distribution, in which the particles are subject to inelastic mutual collisions and are driven by Gaussian white noise. The inhomogeneity of the particle size distribution is described by a fractal dimension D. The stationary state that the mixture reaches is the result of the balance between energy dissipation and energy injection. By molecular dynamics simulations, we have mainly studied how the inhomogeneity of the particle size distribution and the inelasticity of collisions influence the velocity distribution and distribution of interparticle spacing in the steady-state. The simulation results indicate that, in the inelasticity case, the velocity distribution strongly deviates from the Gaussian one and the system has a strong spatial clustering. Thus the inhomogeneity and the inelasticity have great effacts on the velocity distribution and distribution of interparticle spacing. The quantitative information of the non-Gaussian velocity distribution and that of clustering are respectively represented.展开更多
We present a model of non-uniform granular gases in one-dimensional case, whose granularity distribution has the fractal characteristic. We have studied the nonequilibrium properties of the system by means of Monte Ca...We present a model of non-uniform granular gases in one-dimensional case, whose granularity distribution has the fractal characteristic. We have studied the nonequilibrium properties of the system by means of Monte Carlo method. When the typical relaxation time T of the Brownian process is greater than the mean collision time To, the energy evolution of the system exponentially decays, with a tendency to achieve a stable asymptotic value, and the system finally reaches a nonequilibrium steady state in which the velocity distribution strongly deviates from the Gaussian one. Three other aspects have also been studied for the steady state: the visualized change of the particle density, the entropy of the system and the correlations in the velocity of particles. And the results of simulations indicate that the system has strong spatial clustering; Furthermore, the influence of the inelasticity and inhomogeneity on dynamic behaviors have also been extensively investigated, especially the dependence of the entropy and the correlations in the velocity of particles on the restitute coefficient e and the fractal dimension D.展开更多
We study the global pressure of a one-dimensional polydisperse granular gases system for the first time, in which the size distribution of particles has the fractal characteristic and the inhomogeneity is described by...We study the global pressure of a one-dimensional polydisperse granular gases system for the first time, in which the size distribution of particles has the fractal characteristic and the inhomogeneity is described by a fractal dimension D. The particles are driven by Gaussian white noise and subject to inelastic mutual collisions. We define the global pressure P of the system as the impulse transferred across a surface in a unit of time, which has two contributions, one from the translational motion of particles and the other from the collisions. Explicit expression for the global pressure in the steady state is derived. By molecular dynamics simulations, we investigate how the inelasticity of collisions and the inhomogeneity of the particles influence the global pressure. The simulation results indicate that the restitution coefficient e and the fractal dimension D have significant effect on the pressure.展开更多
We present a non-uniform granular system in one-dimensional case, whose granularity distribution has the fractal characteristic. The particles are subject to inelastic mutual collisions and obey Langevin equation betw...We present a non-uniform granular system in one-dimensional case, whose granularity distribution has the fractal characteristic. The particles are subject to inelastic mutual collisions and obey Langevin equation between collisions. By Monte Carlo simulation we study the dynamic actions of the system. Far from the equilibrium, i.e., τ 〉〉 τe, the results of simulation indicate that the inhomogeneity of the system and the inelasticity of the particles have great influences on the dynamic properties of the system, and correspondingly the influence of the inhomogeneity is more significant.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10675048 and Natural Science Foundation of Xianning College under Grant No. KZ0627
文摘We present a one-dimensional dynamic model of polydisperse granular mixture with the fractal characteristic of the particle size distribution, in which the particles are subject to inelastic mutual collisions and are driven by Gaussian white noise. The inhomogeneity of the particle size distribution is described by a fractal dimension D. The stationary state that the mixture reaches is the result of the balance between energy dissipation and energy injection. By molecular dynamics simulations, we have mainly studied how the inhomogeneity of the particle size distribution and the inelasticity of collisions influence the velocity distribution and distribution of interparticle spacing in the steady-state. The simulation results indicate that, in the inelasticity case, the velocity distribution strongly deviates from the Gaussian one and the system has a strong spatial clustering. Thus the inhomogeneity and the inelasticity have great effacts on the velocity distribution and distribution of interparticle spacing. The quantitative information of the non-Gaussian velocity distribution and that of clustering are respectively represented.
基金The project supported by National Natural Science of China under Grant No. 10675408 and Natural Science Foundation of Xianning College under Grant No. KZ0627
文摘We present a model of non-uniform granular gases in one-dimensional case, whose granularity distribution has the fractal characteristic. We have studied the nonequilibrium properties of the system by means of Monte Carlo method. When the typical relaxation time T of the Brownian process is greater than the mean collision time To, the energy evolution of the system exponentially decays, with a tendency to achieve a stable asymptotic value, and the system finally reaches a nonequilibrium steady state in which the velocity distribution strongly deviates from the Gaussian one. Three other aspects have also been studied for the steady state: the visualized change of the particle density, the entropy of the system and the correlations in the velocity of particles. And the results of simulations indicate that the system has strong spatial clustering; Furthermore, the influence of the inelasticity and inhomogeneity on dynamic behaviors have also been extensively investigated, especially the dependence of the entropy and the correlations in the velocity of particles on the restitute coefficient e and the fractal dimension D.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10675048 and 10604017 and Natural Science Foundation of Xianning College under Grant No. KZ0627
文摘We study the global pressure of a one-dimensional polydisperse granular gases system for the first time, in which the size distribution of particles has the fractal characteristic and the inhomogeneity is described by a fractal dimension D. The particles are driven by Gaussian white noise and subject to inelastic mutual collisions. We define the global pressure P of the system as the impulse transferred across a surface in a unit of time, which has two contributions, one from the translational motion of particles and the other from the collisions. Explicit expression for the global pressure in the steady state is derived. By molecular dynamics simulations, we investigate how the inelasticity of collisions and the inhomogeneity of the particles influence the global pressure. The simulation results indicate that the restitution coefficient e and the fractal dimension D have significant effect on the pressure.
基金国家自然科学基金,the Sunshine Foundation of Wuhan City under
文摘We present a non-uniform granular system in one-dimensional case, whose granularity distribution has the fractal characteristic. The particles are subject to inelastic mutual collisions and obey Langevin equation between collisions. By Monte Carlo simulation we study the dynamic actions of the system. Far from the equilibrium, i.e., τ 〉〉 τe, the results of simulation indicate that the inhomogeneity of the system and the inelasticity of the particles have great influences on the dynamic properties of the system, and correspondingly the influence of the inhomogeneity is more significant.