Size distribution characteristics of intercity bus hubs in China from 1997 to 2(104 were analyzed regarding highway passenger volume as a size index of intercity bus hubs. Yearly fractal dimensions of intercity bus h...Size distribution characteristics of intercity bus hubs in China from 1997 to 2(104 were analyzed regarding highway passenger volume as a size index of intercity bus hubs. Yearly fractal dimensions of intercity bus hub sizes were exactly calculated by a novel model. Fractal dimensions of the 200 biggest intercity bus hubs from 2000 to 2004 were 1. 486 2 to 1. 511 8, and that is consistent with fractal dimensions of Chinese urban system sizes. It showed that the size distribution of intercity bus hubs had fractal structure. Fractal dimensions from 1997 to 2004 indicated that intercity bus hub size distribution grew from bi-fractal to single fractal. It is concluded that the intercity bus hub system is in evolutionary progress, and the Central Government should support large intercity bus hubs more to optimize system structure.展开更多
Sediment cores were collected from the subaqueous delta of the Changjiang Estuary. Sediment grain-size profiles and their fractal dimensions were analyzed, to elucidate responses to long-term sedimentary processes. In...Sediment cores were collected from the subaqueous delta of the Changjiang Estuary. Sediment grain-size profiles and their fractal dimensions were analyzed, to elucidate responses to long-term sedimentary processes. In addition, the environmental sensitive populations of grain size have been extracted. The sediment cores can be divided into two parts, according to the sedimentary structures present. The upper part (0-12 cm) is interpreted as being the active layer, which is influenced frequently by changes in the short-term hydrodynamic environment. The lower part extends from a depth of 12 cm, to the bottom of the core. The pattern of fluctuation is linked to sediment grain size. Moreover, two grain-size sensitive populations can be identified. The fine sensitive population is 6.0-7.2 μm, which is a similar grain size to the suspended sediment from up-river. The coarse sensitive population varies from 40.7 to 57.5 μm, revealing complex changes. Thus, the riverine inputs from the Changjiang River may be an important source, which contributes to seasonal fluctuations of grain-size distribution, over the area. The sediments, with grain-sizes ranging from 0.9 to 20.3 μm, are characterised by self-similar in the fractal non-scale region. The fraetal dimension is eonsistant with the grain-size parameter varatioins, which could be used as a replacement index to reveal and reconstruct the sedimentary environmental evolution.展开更多
True triaxial rockburst experiments with four different unloading rates were performed on four prism specimens of granite sampled from Beishan, China. The damage evolution in the rockburst test was investigated from t...True triaxial rockburst experiments with four different unloading rates were performed on four prism specimens of granite sampled from Beishan, China. The damage evolution in the rockburst test was investigated from two aspects including fracture surface crack and fragment characteristics. The scanning electron microscopy was used to observe the micro crack information on fragment surface. Combing binarization and box counting dimensions, the fractal dimensions of cracks were obtained. Meanwhile,the fragments were collected and a sieving experiment was conducted. We weighed the fragments qualities, counted the amount of fragments and measured the fragments length, width and thickness.Utilizing four methods to calculate damage fractal dimensions of fragments, the trend of fractal value changing with unloading rates can be roughly described. It can be concluded from these experiments that the fractal dimension either for crack or for fragment holds a decreasing trend with the decreasing unloading rate, indicating a reduction of damage level.展开更多
In this study,X-ray diffraction,N_(2)adsorption(N_(2)A),and mercury intrusion(MI)experiments were used to investigate the influence of acid treatment on pore structure and fractal characterization of tight sandstones....In this study,X-ray diffraction,N_(2)adsorption(N_(2)A),and mercury intrusion(MI)experiments were used to investigate the influence of acid treatment on pore structure and fractal characterization of tight sandstones.The results showed that acid treatment generated a certain number of ink-bottle pores in fine sandstone,aggravated the ink-bottle effect in the sandy mudstone,and transformed some smaller pores into larger ones.After the acid treatment,both the pore volume in the range of 2–11 nm and 0.271–8μm for the fine sandstone and the entire pore size range for the sandy mudstone significantly increased.The dissolution of sandstone cement causes the fine sandstone particles to fall off and fill the pores;the porosity increased at first but then decreased with acid treatment time.The fractal dimension obtained using the Frenkel-Halsey-Hill model was positively correlated with acid treatment time.However,the total fractal dimensions obtained by MI tests showed different changes with acid treatment time in fine sandstone and sandy mudstone.These results provide good guiding significance for reservoir acidification stimulation.展开更多
Nonwovens' pore structures are very important to their mechanical and physical properties. And the pore structures are influenced by the fiber properties and fibers arrangement in web. In this paper, the fractal geom...Nonwovens' pore structures are very important to their mechanical and physical properties. And the pore structures are influenced by the fiber properties and fibers arrangement in web. In this paper, the fractal geometry, in combination with computer image anaysis, is used to express the irregularity of pore size distribution in nonwovens, and the effect of fiber properties on fractal dimension of pore size distribution is discussed by using simulated images which are composed of nonlinear staple fibers. The results show that the fiber properties, such as crimp, diameter, angular distribution, and especially the number of fibers prominently influence the pore structure.展开更多
This paper presents a detailed study on the textural and geochemical characteristics of the proglacial sediments near the edge of modern Nelson Ice Cap, Antarctica. The grain size distributions of the proglacial sedim...This paper presents a detailed study on the textural and geochemical characteristics of the proglacial sediments near the edge of modern Nelson Ice Cap, Antarctica. The grain size distributions of the proglacial sediments are characteristic of glacigenic deposits, but very different from those of aeolian and lacustrine sediments. Moreover, the grain size distributions of the proglacial sediments are fractal with a dimension of about 2.9, and the fractal dimensions can be used as another summary statistical parameter for quantifying the relative amounts of coarse and fine materials. Correlations between the absolute element abundances of the proglacial sediments are very weak due to mineral partitioning and other effects of glacial processes, but correlations between the element/Rb ratios are statistically significant. This finding indicates that element/Rb ratios can be used to reduce or eliminate the effects of glacial processes, evaluate geochemical data and determine the sediment provenance in the foreland of Antarctic glacier. Comparisons on the element concentrations among different environments suggest that the proglacial sediments are derived predominantly from local bedrocks and appear to be natural in origin. Thus these natural sediments can be used to study chemical weathering in the proglacial foreland of modern glacier.展开更多
This study selected polyaluminum chloride(PAC) coagulant to remove suspended particles in Kaolin suspension solution and used a turbidimeter and particle counter to monitor the flocculation process online and collec...This study selected polyaluminum chloride(PAC) coagulant to remove suspended particles in Kaolin suspension solution and used a turbidimeter and particle counter to monitor the flocculation process online and collected the experiment data. The experiments were conducted to study the dynamic distribution characteristics of suspended particles under different hydrodynamic conditions. The results show the self-similarity and scale invariance of particle size distribution. The study further proposed the concept of fractal dimension of particle size distribution and found out that fractal dimension changed in a similar way as residual turbidity did and could excellently indicate the variation of coagulation effect. Therefore, fractal dimension could be adopted to optimize the addition of coagulants and the quality of outflow could be further improved to reduce production costs.展开更多
Wind and water erosion are among the most important causes of soil loss, and understanding their interactions is important for estimating soil quality and environmental impacts in regions where both types of erosion o...Wind and water erosion are among the most important causes of soil loss, and understanding their interactions is important for estimating soil quality and environmental impacts in regions where both types of erosion occur. We used a wind tunnel and simulated rainfall to study sediment yield, particle-size distribution and the fractal dimension of the sediment particles under wind and water erosion. The experiment was conducted with wind ero- sion firstly and water erosion thereafter, under three wind speeds (0, 11 and 14 m/s) and three rainfall intensities (60, 80 and 100 ram/h). The results showed that the sediment yield was positively correlated with wind speed and rain- fall intensity (P〈0.01). Wind erosion exacerbated water erosion and increased sediment yield by 7.25%-38.97% relative to the absence of wind erosion. Wind erosion changed the sediment particle distribution by influencing the micro-topography of the sloping land surface. The clay, silt and sand contents of eroded sediment were also posi- tively correlated with wind speed and rainfall intensity (P〈0.01). Wind erosion increased clay and silt contents by 0.35%-19.60% and 5.80%-21.10%, respectively, and decreased sand content by 2.40%-8.33%, relative to the absence of wind erosion. The effect of wind erosion on sediment particles became weaker with increasing rainfall intensities, which was consistent with the variation in sediment yield. However, particle-size distribution was not closely correlated with sediment yield (P〉0.05). The fractal dimension of the sediment particles was significantly different under different intensities of water erosion (P〈0.05), but no significant difference was found under wind and water erosion. The findings reported in this study implicated that both water and wind erosion should be controlled to reduce their intensifying effects, and the controlling of wind erosion could significantly reduce water erosion in this wind-water erosion crisscross region.展开更多
Based on the hypothesis of the fractal distribution of crack sizes in brittle materials and the weakest link principle, the relationship between the fractal dimension of the size-frequency distribution of cracks and t...Based on the hypothesis of the fractal distribution of crack sizes in brittle materials and the weakest link principle, the relationship between the fractal dimension of the size-frequency distribution of cracks and the Weibull Modulus is derived, which reveals the geometrical nature of the Weibull Modulus. The influences of the size distribution and the orientation distribution of cracks as well as the irregularity of the crack propagation on the strength are all taken into account. Finally, a general expression for the statistical strength of brittle materials in complex tensile stress state is obtained.展开更多
We present a dynamical model of two-dimensional polydisperse granular gases with fractal size distribution, in which the disks are subject to inelastic mutual collisions and driven by standard white noise. The inhomog...We present a dynamical model of two-dimensional polydisperse granular gases with fractal size distribution, in which the disks are subject to inelastic mutual collisions and driven by standard white noise. The inhomogeneity of the disk size distribution can be measured by a fractal dimension df. By Monte Carlo simulations, we have mainly investigated the effect of the inhomogeneity on the statistical properties of the system in the same inelasticity case. Some novel results are found that the average energy of the system decays exponentially with a tendency to achieve a stable asymptotic value, and the system finally reaches a nonequilibrium steady state after a long evolution time. Furthermore, the inhomogeneity has great influence on the steady-state statistical properties. With the increase of the fractal dimension df, the distributions of path lengths and free times between collisions deviate more obviously from expected theoretical forms for elastic spheres and have an overpopulation of short distances and time bins. The collision rate increases with df, but it is independent of time. Meanwhile, the velocity distribution deviates more strongly from the Gaussian one, but does not demonstrate any apparent universal behavior.展开更多
基金The Ph.D.Programs Foundation of Ministry of Edu-cation of China(No20050710006)
文摘Size distribution characteristics of intercity bus hubs in China from 1997 to 2(104 were analyzed regarding highway passenger volume as a size index of intercity bus hubs. Yearly fractal dimensions of intercity bus hub sizes were exactly calculated by a novel model. Fractal dimensions of the 200 biggest intercity bus hubs from 2000 to 2004 were 1. 486 2 to 1. 511 8, and that is consistent with fractal dimensions of Chinese urban system sizes. It showed that the size distribution of intercity bus hubs had fractal structure. Fractal dimensions from 1997 to 2004 indicated that intercity bus hub size distribution grew from bi-fractal to single fractal. It is concluded that the intercity bus hub system is in evolutionary progress, and the Central Government should support large intercity bus hubs more to optimize system structure.
基金The National Basic Research Program of China under contract No 2002CB412401the National Natural Science Foundation of China under contract Nos 40876043 & 40106009+1 种基金the Jiangsu Natural Science Foundation under contract NoBK2006131the NCET Program under contract NoNCET-06-0446
文摘Sediment cores were collected from the subaqueous delta of the Changjiang Estuary. Sediment grain-size profiles and their fractal dimensions were analyzed, to elucidate responses to long-term sedimentary processes. In addition, the environmental sensitive populations of grain size have been extracted. The sediment cores can be divided into two parts, according to the sedimentary structures present. The upper part (0-12 cm) is interpreted as being the active layer, which is influenced frequently by changes in the short-term hydrodynamic environment. The lower part extends from a depth of 12 cm, to the bottom of the core. The pattern of fluctuation is linked to sediment grain size. Moreover, two grain-size sensitive populations can be identified. The fine sensitive population is 6.0-7.2 μm, which is a similar grain size to the suspended sediment from up-river. The coarse sensitive population varies from 40.7 to 57.5 μm, revealing complex changes. Thus, the riverine inputs from the Changjiang River may be an important source, which contributes to seasonal fluctuations of grain-size distribution, over the area. The sediments, with grain-sizes ranging from 0.9 to 20.3 μm, are characterised by self-similar in the fractal non-scale region. The fraetal dimension is eonsistant with the grain-size parameter varatioins, which could be used as a replacement index to reveal and reconstruct the sedimentary environmental evolution.
基金supported by the National Key Basic Research Program (No. 2010CB226800)the Innovation Team Development Program of the Ministry of Education (No. IRT0656)the Fundamental Research Funds for the Central Universities (No. 2010YL14)
文摘True triaxial rockburst experiments with four different unloading rates were performed on four prism specimens of granite sampled from Beishan, China. The damage evolution in the rockburst test was investigated from two aspects including fracture surface crack and fragment characteristics. The scanning electron microscopy was used to observe the micro crack information on fragment surface. Combing binarization and box counting dimensions, the fractal dimensions of cracks were obtained. Meanwhile,the fragments were collected and a sieving experiment was conducted. We weighed the fragments qualities, counted the amount of fragments and measured the fragments length, width and thickness.Utilizing four methods to calculate damage fractal dimensions of fragments, the trend of fractal value changing with unloading rates can be roughly described. It can be concluded from these experiments that the fractal dimension either for crack or for fragment holds a decreasing trend with the decreasing unloading rate, indicating a reduction of damage level.
基金supported by the National Natural Science Foundation of China(51674049,52074044,and 51874053)the Scientific Research Foundation of Hunan Provincial Education Department,China(22B0854)。
文摘In this study,X-ray diffraction,N_(2)adsorption(N_(2)A),and mercury intrusion(MI)experiments were used to investigate the influence of acid treatment on pore structure and fractal characterization of tight sandstones.The results showed that acid treatment generated a certain number of ink-bottle pores in fine sandstone,aggravated the ink-bottle effect in the sandy mudstone,and transformed some smaller pores into larger ones.After the acid treatment,both the pore volume in the range of 2–11 nm and 0.271–8μm for the fine sandstone and the entire pore size range for the sandy mudstone significantly increased.The dissolution of sandstone cement causes the fine sandstone particles to fall off and fill the pores;the porosity increased at first but then decreased with acid treatment time.The fractal dimension obtained using the Frenkel-Halsey-Hill model was positively correlated with acid treatment time.However,the total fractal dimensions obtained by MI tests showed different changes with acid treatment time in fine sandstone and sandy mudstone.These results provide good guiding significance for reservoir acidification stimulation.
文摘Nonwovens' pore structures are very important to their mechanical and physical properties. And the pore structures are influenced by the fiber properties and fibers arrangement in web. In this paper, the fractal geometry, in combination with computer image anaysis, is used to express the irregularity of pore size distribution in nonwovens, and the effect of fiber properties on fractal dimension of pore size distribution is discussed by using simulated images which are composed of nonlinear staple fibers. The results show that the fiber properties, such as crimp, diameter, angular distribution, and especially the number of fibers prominently influence the pore structure.
基金The work was supported by the Nationa1 Natural ScienceFoundation of China(Grant No.40231002 and 40076032)the project of Chinese Academy of Sciences(Grant No.KZCX2-303)
文摘This paper presents a detailed study on the textural and geochemical characteristics of the proglacial sediments near the edge of modern Nelson Ice Cap, Antarctica. The grain size distributions of the proglacial sediments are characteristic of glacigenic deposits, but very different from those of aeolian and lacustrine sediments. Moreover, the grain size distributions of the proglacial sediments are fractal with a dimension of about 2.9, and the fractal dimensions can be used as another summary statistical parameter for quantifying the relative amounts of coarse and fine materials. Correlations between the absolute element abundances of the proglacial sediments are very weak due to mineral partitioning and other effects of glacial processes, but correlations between the element/Rb ratios are statistically significant. This finding indicates that element/Rb ratios can be used to reduce or eliminate the effects of glacial processes, evaluate geochemical data and determine the sediment provenance in the foreland of Antarctic glacier. Comparisons on the element concentrations among different environments suggest that the proglacial sediments are derived predominantly from local bedrocks and appear to be natural in origin. Thus these natural sediments can be used to study chemical weathering in the proglacial foreland of modern glacier.
基金The National High Technology Research and Development Program of China(863 Program) (2006AA06Z305)the National Science and Technology Project of Eleventh Five Years(2006BAJ08B05-2)Supported by the National Natural Science Foundation of China(50678047)
文摘This study selected polyaluminum chloride(PAC) coagulant to remove suspended particles in Kaolin suspension solution and used a turbidimeter and particle counter to monitor the flocculation process online and collected the experiment data. The experiments were conducted to study the dynamic distribution characteristics of suspended particles under different hydrodynamic conditions. The results show the self-similarity and scale invariance of particle size distribution. The study further proposed the concept of fractal dimension of particle size distribution and found out that fractal dimension changed in a similar way as residual turbidity did and could excellently indicate the variation of coagulation effect. Therefore, fractal dimension could be adopted to optimize the addition of coagulants and the quality of outflow could be further improved to reduce production costs.
基金financially supported by the Special Program for Basic Research of the Ministry of Science and Technology, China (2014FY210100)the National Natural Science Foundation of China (41171422, 41271298)the West Light Foundation of the Chinese Academy of Sciences
文摘Wind and water erosion are among the most important causes of soil loss, and understanding their interactions is important for estimating soil quality and environmental impacts in regions where both types of erosion occur. We used a wind tunnel and simulated rainfall to study sediment yield, particle-size distribution and the fractal dimension of the sediment particles under wind and water erosion. The experiment was conducted with wind ero- sion firstly and water erosion thereafter, under three wind speeds (0, 11 and 14 m/s) and three rainfall intensities (60, 80 and 100 ram/h). The results showed that the sediment yield was positively correlated with wind speed and rain- fall intensity (P〈0.01). Wind erosion exacerbated water erosion and increased sediment yield by 7.25%-38.97% relative to the absence of wind erosion. Wind erosion changed the sediment particle distribution by influencing the micro-topography of the sloping land surface. The clay, silt and sand contents of eroded sediment were also posi- tively correlated with wind speed and rainfall intensity (P〈0.01). Wind erosion increased clay and silt contents by 0.35%-19.60% and 5.80%-21.10%, respectively, and decreased sand content by 2.40%-8.33%, relative to the absence of wind erosion. The effect of wind erosion on sediment particles became weaker with increasing rainfall intensities, which was consistent with the variation in sediment yield. However, particle-size distribution was not closely correlated with sediment yield (P〉0.05). The fractal dimension of the sediment particles was significantly different under different intensities of water erosion (P〈0.05), but no significant difference was found under wind and water erosion. The findings reported in this study implicated that both water and wind erosion should be controlled to reduce their intensifying effects, and the controlling of wind erosion could significantly reduce water erosion in this wind-water erosion crisscross region.
文摘Based on the hypothesis of the fractal distribution of crack sizes in brittle materials and the weakest link principle, the relationship between the fractal dimension of the size-frequency distribution of cracks and the Weibull Modulus is derived, which reveals the geometrical nature of the Weibull Modulus. The influences of the size distribution and the orientation distribution of cracks as well as the irregularity of the crack propagation on the strength are all taken into account. Finally, a general expression for the statistical strength of brittle materials in complex tensile stress state is obtained.
基金The project supported by National Natural Science Foundation of China under Grant No.10675048the Natural Science Foundation of Education Department of Hubei Province of China under Grant Nos.D200628002 and kz0627
文摘We present a dynamical model of two-dimensional polydisperse granular gases with fractal size distribution, in which the disks are subject to inelastic mutual collisions and driven by standard white noise. The inhomogeneity of the disk size distribution can be measured by a fractal dimension df. By Monte Carlo simulations, we have mainly investigated the effect of the inhomogeneity on the statistical properties of the system in the same inelasticity case. Some novel results are found that the average energy of the system decays exponentially with a tendency to achieve a stable asymptotic value, and the system finally reaches a nonequilibrium steady state after a long evolution time. Furthermore, the inhomogeneity has great influence on the steady-state statistical properties. With the increase of the fractal dimension df, the distributions of path lengths and free times between collisions deviate more obviously from expected theoretical forms for elastic spheres and have an overpopulation of short distances and time bins. The collision rate increases with df, but it is independent of time. Meanwhile, the velocity distribution deviates more strongly from the Gaussian one, but does not demonstrate any apparent universal behavior.