Properties of fractional Brownian motions (fBms) have been investigated by researchers in different fields, e.g. statistics, hydrology, biology, finance, and public transportation, which has helped us better underst...Properties of fractional Brownian motions (fBms) have been investigated by researchers in different fields, e.g. statistics, hydrology, biology, finance, and public transportation, which has helped us better understand many complex time series observed in nature [1-4]. The Hurst exponent H (0 〈 H 〈 1) is the most important parameter characterizing any given time series F(t), where t represents the time steps, and the fractal dimension D is determined via the relation D = 2 - H.展开更多
The article presents the results of recent investigations into Holter monitoring of ECG, using non-linear analysis methods. This paper discusses one of the modern methods of time series analysis--a method of determini...The article presents the results of recent investigations into Holter monitoring of ECG, using non-linear analysis methods. This paper discusses one of the modern methods of time series analysis--a method of deterministic chaos theory. It involves the transition from study of the characteristics of the signal to the investigation of metric (and probabilistic) properties of the reconstructed attractor of the signal. It is shown that one of the most precise characteristics of the functional state of biological systems is the dynamical trend of correlation dimension and entropy of the reconstructed attractor. On the basis of this it is suggested that a complex programming apparatus be created for calculating these characteristics on line. A similar programming product is being created now with the support of RFBR. The first results of the working program, its adjustment, and further development, are also considered in the article.展开更多
基金partially supported by the National Natural Science Foundation of China(Grant Nos.11173064,11233001,11233008,and U1531131)the Strategic Priority Research Program,the Emergence of Cosmological Structures of the Chinese Academy of Sciences(Grant No.XDB09000000)
文摘Properties of fractional Brownian motions (fBms) have been investigated by researchers in different fields, e.g. statistics, hydrology, biology, finance, and public transportation, which has helped us better understand many complex time series observed in nature [1-4]. The Hurst exponent H (0 〈 H 〈 1) is the most important parameter characterizing any given time series F(t), where t represents the time steps, and the fractal dimension D is determined via the relation D = 2 - H.
文摘The article presents the results of recent investigations into Holter monitoring of ECG, using non-linear analysis methods. This paper discusses one of the modern methods of time series analysis--a method of deterministic chaos theory. It involves the transition from study of the characteristics of the signal to the investigation of metric (and probabilistic) properties of the reconstructed attractor of the signal. It is shown that one of the most precise characteristics of the functional state of biological systems is the dynamical trend of correlation dimension and entropy of the reconstructed attractor. On the basis of this it is suggested that a complex programming apparatus be created for calculating these characteristics on line. A similar programming product is being created now with the support of RFBR. The first results of the working program, its adjustment, and further development, are also considered in the article.