[Objective] The kinetic characteristics of alliinase was studied to select the optimum reaction performance. [Method] Alliinase activity was measured to analysis the influence of temperature, pH, substrate concentrati...[Objective] The kinetic characteristics of alliinase was studied to select the optimum reaction performance. [Method] Alliinase activity was measured to analysis the influence of temperature, pH, substrate concentration and metal iron. [Result] Alliinase was an enzyme with thermal instability. Its optimum reaction temperature was 29℃ and pH value was 6.1. The Vmax was 0. 439 IU/mg and Km was 0.483 mmol/L by using natural extract as substrate. Alliinase activity was activated when the K^+ , Mg^2+ , Na^+ and Cd^2+ existed and alliinase activity was inhibited when Cu^2+ existed. [Condusion] Results showed that the kinetic characteristics of alliinase supply the academic foundation for development and application of garlic medical products.展开更多
The electrification of vehicles puts forward higher requirements for the power management efficiency of integrated battery management systems as the primary or sole energy supply.In this paper,an efficient adaptive mu...The electrification of vehicles puts forward higher requirements for the power management efficiency of integrated battery management systems as the primary or sole energy supply.In this paper,an efficient adaptive multi-time scale identification strategy is proposed to achieve high-fidelity modeling of complex kinetic processes inside the battery.More specifically,a second-order equivalent circuit model network considering variable characteristic frequency is constructed based on the high-frequency,medium-high-frequency,and low-frequency characteristics of the key kinetic processes.Then,two coupled sub-filters are developed based on forgetting factor recursive least squares and extended Kalman filtering methods and decoupled by the corresponding time-scale information.The coupled iterative calculation of the two sub-filter modules at different time scales is realized by the voltage response of the kinetic diffusion process.In addition,the driver of the low-frequency subalgorithm with the state of charge variation amount as the kernel is designed to realize the adaptive identification of the kinetic diffusion process parameters.Finally,the concept of dynamical parameter entropy is introduced and advocated to verify the physical meaning of the kinetic parameters.The experimental results under three operating conditions show that the mean absolute error and root-mean-square error metrics of the proposed strategy for voltage tracking can be limited to 13 and 16 mV,respectively.Additionally,from the entropy calculation results,the proposed method can reduce the dispersion of parameter identification results by a maximum of 40.72%and 70.05%,respectively,compared with the traditional fixed characteristic frequency algorithms.The proposed method paves the way for the subsequent development of adaptive state estimators and efficient embedded applications.展开更多
The combustion characteristics of blast furnace bag dust(BD) and three kinds of coal—Shenhua(SH) bituminous coal, Pingluo(PL) anthracite, and Yangquan(YQ) anthracite—were obtained via non-isothermal thermogravimetry...The combustion characteristics of blast furnace bag dust(BD) and three kinds of coal—Shenhua(SH) bituminous coal, Pingluo(PL) anthracite, and Yangquan(YQ) anthracite—were obtained via non-isothermal thermogravimetry. The combustion characteristics with different mixing ratios were also investigated. The physical and chemical properties of the four samples were investigated in depth using particle size analysis, Scanning electron microscopy, X-ray diffraction, X-ray fluorescence analysis, and Raman spectroscopy. The results show that the conversion rate of the three kinds of pulverized coals is far greater than that of the BD. The comprehensive combustion characteristics of the three types of pulverized coals rank in the order SH > PL > YQ. With the addition of BD, the characteristic parameters of the combustion reaction of the blend showed an increasing trend. The Coats–Redfern model used in this study fit well with the experimental results. As the BD addition increased from 5 wt% to 10 wt%, the activation energy of combustion reactions decreased from 68.50 to 66.74 k J/mol for SH, 118.34 to 110.75 kJ/mol for PL, and 146.80 to 122.80 kJ/mol for YQ. These results also provide theoretical support for the practical application of blast furnace dust for blast furnace injection.展开更多
In order to contrast the hydrocarbon generation kinetic characteristics from different types of organic matter(OM),18 samples from different basins were pyrolyzed using Rock-Eval-Ⅱapparatus under the open system.Fr...In order to contrast the hydrocarbon generation kinetic characteristics from different types of organic matter(OM),18 samples from different basins were pyrolyzed using Rock-Eval-Ⅱapparatus under the open system.From the experimental results,the curve of hydrocarbon generation rate vs.temperature can be easily obtained,which usually can be used to optimize kinetic parameters (A,E,F)of the hydrocarbon generation model.In this paper,the parallel first-order reaction with a single frequency factor model is selected to describe the hydrocarbon generation kinetic characteristics. The hydrocarbon generation kinetic parameters reveal that the types of compound structures and chemical bonds of the lacustrine fades typeⅠOM are relatively homogeneous,with one dominating activation energy.The types of chemical bonds of the lacustrine facies typeⅡ2 OM and the terrestrial facies typeⅢOM are relative complex,with a broad activation energy distribution,and the reaction fraction of the preponderant activation energy drops with the decrease of hydrogen index.The impact of the activation energy distribution spaces on the geological extrapolation of kinetic parameters is also investigated.The results show that it has little effect on the hydrocarbon transformation ratio(TR)and therefore,the parallel first-order reaction model with proper number of activation energies can be better used to describe the hydrocarbon generation process.The geological extrapolation results of 18 samples of kinetic parameters show that the distribution range of the hydrocarbon generation rate of the typeⅠOM is relatively narrow and the hydrocarbon generation curve is smooth.In comparison,the distribution range of the hydrocarbon generation for typeⅢand typeⅡ2-ⅢOM are quite wide,and the hydrocarbon generation curves have fluctuation phenomena.The distribution range of the hydrocarbon generation rate and the fluctuation phenomena are related to the kinetic parameters of OM;the narrower the activation energy distribution,the narrower the hydrocarbon generation rate distribution,and the smoother the hydrocarbon generation curve,and vice versa.展开更多
The non-isothermal leaching kinetics of primary titanium-rich material by microwave heating was investigated,and the temperature-pressure curves of leaching system and microwave absorption characteristics of mixture s...The non-isothermal leaching kinetics of primary titanium-rich material by microwave heating was investigated,and the temperature-pressure curves of leaching system and microwave absorption characteristics of mixture solutions before and after leaching were measured.The research of non-isothermal kinetics was evaluated by the leaching rate of Fe and the total apparent velocity equation of the non-isothermal kinetics of leaching for primary titanium-rich material by microwave heating was obtained.It is shown from the temperature-pressure curves that the high temperature and high pressure of closed leaching system are favorable to the enhancement of the leaching rate of Fe.Microwave absorption characteristics of mixture solutions before and after leaching show that there are abrupt changes of microwave absorption characteristics for 15%HCl solution and the mixture solution after leaching by 20%HCl.展开更多
The pyrolysis behaviors of foam patterns have critical influences on fluid morphology and defect formation in Lost Foam Casting(LFC). The pyrolysis behaviors of expanded polystyrene(EPS) and styrenemethyl methacrylate...The pyrolysis behaviors of foam patterns have critical influences on fluid morphology and defect formation in Lost Foam Casting(LFC). The pyrolysis behaviors of expanded polystyrene(EPS) and styrenemethyl methacrylate(St-MMA) foams were compared using synchronous thermal analysis(STA), which was performed under argon atmosphere at different heating rates(from 10 to 40 K·min^(^(-1))). The degradation heat was calculated by integrating DSC curves. Results show that the calculated degradation heat of St-MMA(605.28 J·g^(-1)) was significantly lower than that of EPS(706.71 J·g^(-1)). Furthermore, the non-isothermal iso-conversional method was used to determine the pyrolysis apparent activation energies of EPS and St-MMA, and results show that the activation energy of St-MMA(200.36 kJ·mol^(-1)) was apparently higher than that of EPS(167.92 kJ·mol^(-1)). These calculated results indicate that the weight loss rate of EPS is greater than St-MMA in the pyrolysis process. In addition, the apparent activation energies at various pyrolysis stages demonstrate that the pyrolysis reactions of EPS and St-MMA may involve physical and chemical changes in the decomposition layer of the LFC process.展开更多
The combustion process of Yangquan anthracite(YQ) with the addition of 0.045wt%, 0.211wt%, 1.026wt%, and 2.982wt% chlorine was investigated using a thermogravimetric method from an ambient temperature to 1173 K in a...The combustion process of Yangquan anthracite(YQ) with the addition of 0.045wt%, 0.211wt%, 1.026wt%, and 2.982wt% chlorine was investigated using a thermogravimetric method from an ambient temperature to 1173 K in an air atmosphere. Results show that the YQ combustion characteristics are not significantly affected by an increase in chlorine content. Data acquired for combustion conversion are then further processed for kinetic analysis. Average apparent activation energies determined using the model-free method(specifically the KAS method) are 103.025, 110.250, 99.906, and 110.641 k J/mol, respectively, and the optimal kinetic model for describing the combustion process of chlorine-containing YQ is the nucleation kinetic model, as determined by the z(α) master plot method. The mechanism function of the nucleation kinetic model is then employed to estimate the pre-exponential factor, by making use of the compensation effect. The kinetic models to describe chlorine-containing YQ combustion are thus obtained through advanced determination of the optimal mechanism function, average apparent activation energy, and the pre-exponential factor.展开更多
In order to understand the kinetic characteristics of coal gas desorption based on the pulsating injection (PI), the research experimentally studied the kinetic process of methane desorption in terms of the PI and h...In order to understand the kinetic characteristics of coal gas desorption based on the pulsating injection (PI), the research experimentally studied the kinetic process of methane desorption in terms of the PI and hydrostatic injection (HI). The results show that the kinetic curves of methane desorption based on PI and HI are consistent with each other, and the diffusion model can best describe the characteristics of meth- ane desorption. Initial velocity, diffusion capacity and ultimate desorption amount of methane desorption after P! are greater than those after HI, and the ultimate desorption amount increases by 16.7-39.7%. Methane decay rate over the time is less than that of the HI. The PI influences the diffusion model param- eters, and it makes the mass transfer Biot number B'_i decrease and the mass transfer Fourier series F'_0 increase. As a result, PI makes the methane diffusion resistance in the coal smaller, methane diffusion rate greater, mass transfer velocity faster and the disturbance range of methane concentration wider than HI. Therefore, the effect of methane desorption based on PI is better than that of HI.展开更多
The pyrolysis characteristics of residues of poplar (Populus sp.) wood were investigated using a thermogravimetric analyzer coupled with a Fourier transform infrared (TG-FTIR) spectrometer. The pyrolysis process w...The pyrolysis characteristics of residues of poplar (Populus sp.) wood were investigated using a thermogravimetric analyzer coupled with a Fourier transform infrared (TG-FTIR) spectrometer. The pyrolysis process was sub- divided into four stages at a rate of 10℃.min-1, varying from 30 to 650℃. Below 180℃, a mass loss occurred for drying and preheating the sample and the onset temperature of pyrolysis ranged between 180-260℃. A significant mass loss 3f 61.4 wt.% occurred between 260-380℃, followed by a slow and continuous mass change with lignin devolatilization. The analysis of kinetic reactions showed that the activation energy (78.29 kJ.mol-1) in the low-temperature section was much larger than that (6.40 kJ-mol-1) in the high-temperature section. The evolved gases formed by thermal degradation 3f poplar wood were simultaneously analyzed by FTIR. It was observed from the main peaks that the emissions evolved during poplar wood pyrolysis were acetic acid, carbon dioxide, carbon monoxide, methane, water, some volatile com- 3ounds of esters, alcohols and aldehydes. The emissions gradually increased with rising temperatures before a strong 3eak around 360℃ and then decreased. Most gaseous products were emitted in the 320-380℃ range, while CO2 was =ontinuously emitted in a wide range from 140-550℃.展开更多
Rice husk (biomass fuel) samples have been dried in drying oven and a series of drying curve for illustrating moisture migration of rice husk have been obtained. It is first research for rice husk drying,and it can pr...Rice husk (biomass fuel) samples have been dried in drying oven and a series of drying curve for illustrating moisture migration of rice husk have been obtained. It is first research for rice husk drying,and it can provide reference of fuel processing for different boilers which require rice husk with various water contents. In this paper,we apply Page equation to reflect the drying process and obtain drying characteristic curve,then analyze the drying law. Kinetic analysis of the results of moisture migration test has been done,after which, effective moisture diffusion coefficient,activation energy and drying kinetic equation of rice husk samples are obtained in test temperature range (80 - 130 ℃) . And these results show specific influence law of temperature for effective moisture diffusion coefficient.展开更多
The thermal decomposition characteristics of methyl linoleate (ML) under nitrogen and oxygen atmo- spheres were investigated, using a thermogravimetric analyzer at a heating rate of 10 ~C/min from room tem- perature...The thermal decomposition characteristics of methyl linoleate (ML) under nitrogen and oxygen atmo- spheres were investigated, using a thermogravimetric analyzer at a heating rate of 10 ~C/min from room tem- perature to 600℃. Furthermore, the pyrolytic and kinetic characteristics of ML at different heating rates were stud- ied. The results showed that the thermal decomposition characteristics of ML under nitrogen and oxygen atmo- spheres were macroscopically similar, although ML exhibited relatively lower thermal stability under an oxy- gen atmosphere than under a nitrogen atmosphere. The initial decomposition temperature, the maximum weight loss temperature, the peak decomposition temperature, and the rate of maximum weight loss of ML under an oxygen atmosphere were much lower than those under a nitrogen atmosphere and increased with increasing heating rates under either oxygen or nitrogen atmosphere. In addition, the kinetic characteristics of thermal decomposition of ML were elucidated based on the experimental results and by the multiple linear regression method. The activation energy, pre-exponential factor, reaction order, and the kinetic equation for thermal decomposition of ML were obtained. The comparison of experimental and calculated data and the analysis of statistical errors of pyrolysis ratios demonstrated that the kinetic model was reliable for pyrolysis of ML with relative errors of about 1%. Finally, the kinetic compensation effect between the pre-exponential factors and the activation energy in the pyrolysis of ML was also confirmed.展开更多
PVC(polyvinyl chloride) was isolated from waste plastic before manufacturing RPF(refuse paper & plastic fuel), and the characteristics of manufactured RPF including properties, calorific value, pyrolysis, chlorin...PVC(polyvinyl chloride) was isolated from waste plastic before manufacturing RPF(refuse paper & plastic fuel), and the characteristics of manufactured RPF including properties, calorific value, pyrolysis, chlorine content and kinetics analysis were analyzed. Based on the result of TGA(Thermogravimetric analysis), the kinetics characteristics was analyzed by using Kissinger method and Ozawa method which are the most common methods for obtaining activation energy, and the experimental conditions of TGA were set as follows: in a nitrogen atmosphere, with gas flow rate of 20mL/min, heating rate of 5-50 ℃/min, and maximum temperature of 800 ℃. In conclusion, the activation energy showed a tendency to gradually increase by a rise of reaction rate. Although the activation energy with pyrolysis of RPF was irregularly scattered, it was shown that the activation energy was stabilized by co-pyrolysis of RPF and additives(rice bran and sawdust).展开更多
Based on a systemic survey, the pyrolysis characteristics and apparent kinetics of the municipal solid waste ( MSW) under different conditions were researched using a special pyrolysis reactor, which could overcome ...Based on a systemic survey, the pyrolysis characteristics and apparent kinetics of the municipal solid waste ( MSW) under different conditions were researched using a special pyrolysis reactor, which could overcome the disadvantage of thermo-gravimetric analyzer. The thermal decomposition behaviour of MSW was investigated using thermo-gravimetric ( TG ) analysis at rates of 4.8,6.6,8.4, 12.0 and 13. 2 K/min. The pyrolysis characteristics of MSW were also studied in different function districts. The pyrolysis of MSW is a complex reaction process and three main stages are found according to the results. The first stage represents the degradation of cellulose and hemicellulose, with the maximum degradation rate occuring at 150℃ -200 ℃: the second stage represents dehydrochlorination and depolymerization of intermediate products and the differential thermogravimetric ( DTG ) curves have shoulder peaks at about 300℃: the third stage is the decomposition of the residual big molecular organic substance and lignin at 400 ℃- 600 ℃. Within the range of given experimental conditions, the results of non-linear fitting algorithm and experiment are in agreement with each other and the correlation coefficients are over0. 99. The kinetic characteristics are concerned with the material component and heating rate. The activation energy of reaction decreases with the increase of heating rate.展开更多
By using the data from observation on the Chinese research vessel Xiang Yang Hong No.5 and other sources during AMEX phase II, the kinetic energy budget and circulation characteristics of the tropical storm Irma were ...By using the data from observation on the Chinese research vessel Xiang Yang Hong No.5 and other sources during AMEX phase II, the kinetic energy budget and circulation characteristics of the tropical storm Irma were analyzed.Irma formed on the ITCZ of the Southern Hemisphere. During the formative stage of the storm, the SE trades and monsoon westerlies on both sides of the ITCZ strengthened, and more importantly, there was a strong divergent flow in upper troposphere. These contributed to the intensification of Irma. At the time when Irma formed, the Richardson number (Ri) in middle and lower troposphere was much smaller than that prior to and post the formation.When Irma intensified rapidly, the area-averaged kinetic energy in the general flow increased in the whole troposphere . The largest contribution came from kinetic energy generation term, -[v.(?)(?)] .indicates that there existed a strong ageostrophic accetration. As to the generation term , the conversion of available potential energy to kinetic energy, - |ωα|, made the largest contribution. This illustrates the importance of internal sources and of the ensemble effect of cumulus convection to the kinetic energy.To the increase of area-averaged eddy kinetic energy during the rapid intensification of Irma, the most impor tant source in the whole troposphere was the dissipation term - [E'], that should be interpreted as the. feeding of eddy kinetic energy from smaller to larger scale disturbances. Another important source was generation term, - [v' (?)(?)'], in the lower troposphere. Rather small contribution came from the energy conversion from the kinetic energy of area-mean flow to eddy kinetic energy. Therefore, the eddy kinetic energy of the developing tropical disturbance extracted both from smaller an, .arger scale motions. The former was much more important than the latter In addition, the disturbance acting as a generator and exporter, generated and exported eddy kinetic energy to the environmental atmosphere.展开更多
As a byproduct of water treatment,drinking water treatment aluminum sludge(DWTAS)has challenges related to imperfect treatment and disposal,which has caused potential harm to human health and the environment.In this p...As a byproduct of water treatment,drinking water treatment aluminum sludge(DWTAS)has challenges related to imperfect treatment and disposal,which has caused potential harm to human health and the environment.In this paper,heat treatment DWTAS as a supplement cementitious material was used to prepare a green cementing material.The results show that the 800℃ is considered as the optimum heat treatment temperature for DWTAS.DWTAS-800℃ is fully activated after thermal decomposition to form incompletely crystallized highly activeγ-Al_(2)O_(3) and active SiO_(2).The addition of DWTAS promoted the formation of ettringite and C-(A)-S-H gel,which could make up for the low early compressive strength of cementing materials to a certain extent.When cured for 90 days,the compressive strength of the mortar with 30% DWTAS-800℃ reached 44.86 MPa.The dynamic process was well simulated by Krstulovi′c-Dabi′c hydration kinetics model.This study provided a methodology for the fabrication of environmentally friendly and cost-effective compound cementitiousmaterials and proposed a“waste-to-resource”strategy for the sustainable management of typical solid wastes.展开更多
An angular speed,acceleration and tangential leakage of a synchronal rotary compressor in which both bladed rotor and a cylinder are discussed.The calculation formulae of revolving speed of cylinder and relative speed...An angular speed,acceleration and tangential leakage of a synchronal rotary compressor in which both bladed rotor and a cylinder are discussed.The calculation formulae of revolving speed of cylinder and relative speed between the cylinder and bladed rotor are deduced detailedly in this paper.The variation of tangential speed and cylinder acceleration with angular position is investigated for a complete cycle.And some key parameters affected the relative speed are found out,viz,the relative speed depends on the radius of the cylinder and rotary speed of the axis,and the ratio of the cylinder to bladed rotor has not too much influence.It is the theoretic basis of designing and optimizing of structure characteristic of a synchronal rotary compressor.Also a computing formula of leakage related with rotary speed is deduced.It could supply references to thermodynamic calculating.展开更多
The hydrogen absorption characteristics and microstructural evolution of TC21 titanium alloy were investigated by kinetic model analysis, optical microscopy (OM) and X-ray diffraction (XRD). The results show that ...The hydrogen absorption characteristics and microstructural evolution of TC21 titanium alloy were investigated by kinetic model analysis, optical microscopy (OM) and X-ray diffraction (XRD). The results show that the hydrogen absorption reaction occurred during the hydrogen absorption process of TC21 titanium alloy can be divided into two different stages according to the hydrogen absorption kinetics. After hydrogenation, the microstructure of TC21 titanium alloy changes obviously. Just a little hydrogen will change the contrast of transformedβphase. The contrast ofα phase darkens when the hydrogen content in TC21 titanium alloy exceeds 0.5% (mass fraction). The phase/grain boundaries become ambiguous or even vanished, andβ phase becomes the main phase instead ofα phase when the hydrogen content reaches 0.625%. Moreover,α phase disappears when the hydrogen content reaches 1.065%. Additionally, the XRD analysis shows that α' martensite and FCCδ hydride appear in the hydrogenated alloy. According to the microstructures and XRD analysis, the schematic diagrams of hydrogen diffusion process in TC21 titanium alloy were established.展开更多
The degradation kinetics of strains P05 and P07 and the degradation effects of mixed strain on Microcystis aeruginosa were studied. The results showed that: (1) The degradation processes of strains P05 and P07 on Micr...The degradation kinetics of strains P05 and P07 and the degradation effects of mixed strain on Microcystis aeruginosa were studied. The results showed that: (1) The degradation processes of strains P05 and P07 on Microcystis aeruginosa accorded with the first-order reaction model when the range of Chl-a concentration was from 0 to 1500 μg/L. (2) The initial bacterium densities had a strong influence on the degradation velocity. The greater the initial bacterium density was, the faster the degradation was. The degradation velocity constants of P05 were 0.1913, 0.2175 and 0.3092 respectively, when bacterium densities were 4.8×10 5, 4.8×10 6, 2.4×10 7 cells/ml. For strain P07, they were 0.1509, 0.1647 and 0.2708. The degradation velocity constant of strain P05 was higher than that of P07 when the bacterium density was under 4.8×10 5 cells/ml, but the constant increasing of P07 was quicker than that of P05. (3) The degradation effects of P05 and P07 strains did not antagonize. When the concentration of Chl-a was high, the degradation effects of mixed strain excelled that of any single strains. But with the decrease of the Chl-a concentration, this advantage was not clear. When the concentration was less than 180 μg/L, the degradation effects of mixed were consistent with that of strain P07.展开更多
Crystallization kinetics of Al83Y10Ni7(at%) amorphous alloys prepared bymelt spinning was studied by differential scanning calorimetry (DSC). Three or fourstages of transforniation from amorphous to equilibrium state ...Crystallization kinetics of Al83Y10Ni7(at%) amorphous alloys prepared bymelt spinning was studied by differential scanning calorimetry (DSC). Three or fourstages of transforniation from amorphous to equilibrium state can be distinguished atheating rate 1  ̄ 40K / min. Apparent activation energies are calculated according to themethods of Kissinger, Ozawa and Arrhernius equation. An amoaphous phase with highstructural and heat stability was obtained in the vicinity of Al83Y10,Ni7. The isotheimalcrystallization kinetics of the first peak, in the range of 0. 15 ̄ 0.85, was found to be inagreement with John-Mell-Avrami equation with n = 2.5. Nucleation and growth dur-ing isothennal crystallization of the first stage for Al83Y10Ni7 amorpohous were ap-proached by introducing the concept of local Avrami exponent and local activation en-ergy.展开更多
基金Supported by the Natural Science Foundation Program of Tianjin Science Committee(043611111)the Science and Technology Develop-ment Foundation Programof Tianjin Colleges and Universities(20050901)~~
文摘[Objective] The kinetic characteristics of alliinase was studied to select the optimum reaction performance. [Method] Alliinase activity was measured to analysis the influence of temperature, pH, substrate concentration and metal iron. [Result] Alliinase was an enzyme with thermal instability. Its optimum reaction temperature was 29℃ and pH value was 6.1. The Vmax was 0. 439 IU/mg and Km was 0.483 mmol/L by using natural extract as substrate. Alliinase activity was activated when the K^+ , Mg^2+ , Na^+ and Cd^2+ existed and alliinase activity was inhibited when Cu^2+ existed. [Condusion] Results showed that the kinetic characteristics of alliinase supply the academic foundation for development and application of garlic medical products.
基金supported by the National Natural Science Foundation of China,China(Grant Nos.62173281,51975319,61801407)the State Key Laboratory of Tribology and Institute of Manufacturing Engineering at Tsinghua University。
文摘The electrification of vehicles puts forward higher requirements for the power management efficiency of integrated battery management systems as the primary or sole energy supply.In this paper,an efficient adaptive multi-time scale identification strategy is proposed to achieve high-fidelity modeling of complex kinetic processes inside the battery.More specifically,a second-order equivalent circuit model network considering variable characteristic frequency is constructed based on the high-frequency,medium-high-frequency,and low-frequency characteristics of the key kinetic processes.Then,two coupled sub-filters are developed based on forgetting factor recursive least squares and extended Kalman filtering methods and decoupled by the corresponding time-scale information.The coupled iterative calculation of the two sub-filter modules at different time scales is realized by the voltage response of the kinetic diffusion process.In addition,the driver of the low-frequency subalgorithm with the state of charge variation amount as the kernel is designed to realize the adaptive identification of the kinetic diffusion process parameters.Finally,the concept of dynamical parameter entropy is introduced and advocated to verify the physical meaning of the kinetic parameters.The experimental results under three operating conditions show that the mean absolute error and root-mean-square error metrics of the proposed strategy for voltage tracking can be limited to 13 and 16 mV,respectively.Additionally,from the entropy calculation results,the proposed method can reduce the dispersion of parameter identification results by a maximum of 40.72%and 70.05%,respectively,compared with the traditional fixed characteristic frequency algorithms.The proposed method paves the way for the subsequent development of adaptive state estimators and efficient embedded applications.
基金supported by the Natural Science Foundation for Young Scientists of China (No. 51804026)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (No. 2017QNRC001)the National Natural Science Foundation of China (No. 51774032)
文摘The combustion characteristics of blast furnace bag dust(BD) and three kinds of coal—Shenhua(SH) bituminous coal, Pingluo(PL) anthracite, and Yangquan(YQ) anthracite—were obtained via non-isothermal thermogravimetry. The combustion characteristics with different mixing ratios were also investigated. The physical and chemical properties of the four samples were investigated in depth using particle size analysis, Scanning electron microscopy, X-ray diffraction, X-ray fluorescence analysis, and Raman spectroscopy. The results show that the conversion rate of the three kinds of pulverized coals is far greater than that of the BD. The comprehensive combustion characteristics of the three types of pulverized coals rank in the order SH > PL > YQ. With the addition of BD, the characteristic parameters of the combustion reaction of the blend showed an increasing trend. The Coats–Redfern model used in this study fit well with the experimental results. As the BD addition increased from 5 wt% to 10 wt%, the activation energy of combustion reactions decreased from 68.50 to 66.74 k J/mol for SH, 118.34 to 110.75 kJ/mol for PL, and 146.80 to 122.80 kJ/mol for YQ. These results also provide theoretical support for the practical application of blast furnace dust for blast furnace injection.
基金supported by grants from the National Key Basic Research and Development Program(Grant 2006CB202307 and 2009CB219306)the Natural Science Foundation of China(40972101)the Major National Science and Technology Programs(2008ZX05007- 001,2008ZX05004-003)
文摘In order to contrast the hydrocarbon generation kinetic characteristics from different types of organic matter(OM),18 samples from different basins were pyrolyzed using Rock-Eval-Ⅱapparatus under the open system.From the experimental results,the curve of hydrocarbon generation rate vs.temperature can be easily obtained,which usually can be used to optimize kinetic parameters (A,E,F)of the hydrocarbon generation model.In this paper,the parallel first-order reaction with a single frequency factor model is selected to describe the hydrocarbon generation kinetic characteristics. The hydrocarbon generation kinetic parameters reveal that the types of compound structures and chemical bonds of the lacustrine fades typeⅠOM are relatively homogeneous,with one dominating activation energy.The types of chemical bonds of the lacustrine facies typeⅡ2 OM and the terrestrial facies typeⅢOM are relative complex,with a broad activation energy distribution,and the reaction fraction of the preponderant activation energy drops with the decrease of hydrogen index.The impact of the activation energy distribution spaces on the geological extrapolation of kinetic parameters is also investigated.The results show that it has little effect on the hydrocarbon transformation ratio(TR)and therefore,the parallel first-order reaction model with proper number of activation energies can be better used to describe the hydrocarbon generation process.The geological extrapolation results of 18 samples of kinetic parameters show that the distribution range of the hydrocarbon generation rate of the typeⅠOM is relatively narrow and the hydrocarbon generation curve is smooth.In comparison,the distribution range of the hydrocarbon generation for typeⅢand typeⅡ2-ⅢOM are quite wide,and the hydrocarbon generation curves have fluctuation phenomena.The distribution range of the hydrocarbon generation rate and the fluctuation phenomena are related to the kinetic parameters of OM;the narrower the activation energy distribution,the narrower the hydrocarbon generation rate distribution,and the smoother the hydrocarbon generation curve,and vice versa.
基金Project(2007CB613606)supported by the National Basic Research Program of China
文摘The non-isothermal leaching kinetics of primary titanium-rich material by microwave heating was investigated,and the temperature-pressure curves of leaching system and microwave absorption characteristics of mixture solutions before and after leaching were measured.The research of non-isothermal kinetics was evaluated by the leaching rate of Fe and the total apparent velocity equation of the non-isothermal kinetics of leaching for primary titanium-rich material by microwave heating was obtained.It is shown from the temperature-pressure curves that the high temperature and high pressure of closed leaching system are favorable to the enhancement of the leaching rate of Fe.Microwave absorption characteristics of mixture solutions before and after leaching show that there are abrupt changes of microwave absorption characteristics for 15%HCl solution and the mixture solution after leaching by 20%HCl.
文摘The pyrolysis behaviors of foam patterns have critical influences on fluid morphology and defect formation in Lost Foam Casting(LFC). The pyrolysis behaviors of expanded polystyrene(EPS) and styrenemethyl methacrylate(St-MMA) foams were compared using synchronous thermal analysis(STA), which was performed under argon atmosphere at different heating rates(from 10 to 40 K·min^(^(-1))). The degradation heat was calculated by integrating DSC curves. Results show that the calculated degradation heat of St-MMA(605.28 J·g^(-1)) was significantly lower than that of EPS(706.71 J·g^(-1)). Furthermore, the non-isothermal iso-conversional method was used to determine the pyrolysis apparent activation energies of EPS and St-MMA, and results show that the activation energy of St-MMA(200.36 kJ·mol^(-1)) was apparently higher than that of EPS(167.92 kJ·mol^(-1)). These calculated results indicate that the weight loss rate of EPS is greater than St-MMA in the pyrolysis process. In addition, the apparent activation energies at various pyrolysis stages demonstrate that the pyrolysis reactions of EPS and St-MMA may involve physical and chemical changes in the decomposition layer of the LFC process.
基金financially supported by the Beijing Municipal Science & Technology Commission of China (No.Z161100002716017)the Key Program of the National Natural Science Foundation of China (No. U1260202)the 111 Project (No. B13004)
文摘The combustion process of Yangquan anthracite(YQ) with the addition of 0.045wt%, 0.211wt%, 1.026wt%, and 2.982wt% chlorine was investigated using a thermogravimetric method from an ambient temperature to 1173 K in an air atmosphere. Results show that the YQ combustion characteristics are not significantly affected by an increase in chlorine content. Data acquired for combustion conversion are then further processed for kinetic analysis. Average apparent activation energies determined using the model-free method(specifically the KAS method) are 103.025, 110.250, 99.906, and 110.641 k J/mol, respectively, and the optimal kinetic model for describing the combustion process of chlorine-containing YQ is the nucleation kinetic model, as determined by the z(α) master plot method. The mechanism function of the nucleation kinetic model is then employed to estimate the pre-exponential factor, by making use of the compensation effect. The kinetic models to describe chlorine-containing YQ combustion are thus obtained through advanced determination of the optimal mechanism function, average apparent activation energy, and the pre-exponential factor.
基金financially supported by the National Basic Research Program of China (No. 2011CB201205)the National Natural Science Foundation of China (No. 51274195)+2 种基金the Natural Science Foundation of Jiangsu Province of China (No. BK2012571)the National Major Scientific Instrument and Equipment Development Project of China (No. 2013YQ17046309)the Education Department Science and Technology Key Project of Henan Province of China (14B440007)
文摘In order to understand the kinetic characteristics of coal gas desorption based on the pulsating injection (PI), the research experimentally studied the kinetic process of methane desorption in terms of the PI and hydrostatic injection (HI). The results show that the kinetic curves of methane desorption based on PI and HI are consistent with each other, and the diffusion model can best describe the characteristics of meth- ane desorption. Initial velocity, diffusion capacity and ultimate desorption amount of methane desorption after P! are greater than those after HI, and the ultimate desorption amount increases by 16.7-39.7%. Methane decay rate over the time is less than that of the HI. The PI influences the diffusion model param- eters, and it makes the mass transfer Biot number B'_i decrease and the mass transfer Fourier series F'_0 increase. As a result, PI makes the methane diffusion resistance in the coal smaller, methane diffusion rate greater, mass transfer velocity faster and the disturbance range of methane concentration wider than HI. Therefore, the effect of methane desorption based on PI is better than that of HI.
基金supported by the National Natural Science Foundation of China (No. 30972309)the Doctoral Fund of the Ministry of Education of China (No. 20090014110015)
文摘The pyrolysis characteristics of residues of poplar (Populus sp.) wood were investigated using a thermogravimetric analyzer coupled with a Fourier transform infrared (TG-FTIR) spectrometer. The pyrolysis process was sub- divided into four stages at a rate of 10℃.min-1, varying from 30 to 650℃. Below 180℃, a mass loss occurred for drying and preheating the sample and the onset temperature of pyrolysis ranged between 180-260℃. A significant mass loss 3f 61.4 wt.% occurred between 260-380℃, followed by a slow and continuous mass change with lignin devolatilization. The analysis of kinetic reactions showed that the activation energy (78.29 kJ.mol-1) in the low-temperature section was much larger than that (6.40 kJ-mol-1) in the high-temperature section. The evolved gases formed by thermal degradation 3f poplar wood were simultaneously analyzed by FTIR. It was observed from the main peaks that the emissions evolved during poplar wood pyrolysis were acetic acid, carbon dioxide, carbon monoxide, methane, water, some volatile com- 3ounds of esters, alcohols and aldehydes. The emissions gradually increased with rising temperatures before a strong 3eak around 360℃ and then decreased. Most gaseous products were emitted in the 320-380℃ range, while CO2 was =ontinuously emitted in a wide range from 140-550℃.
文摘Rice husk (biomass fuel) samples have been dried in drying oven and a series of drying curve for illustrating moisture migration of rice husk have been obtained. It is first research for rice husk drying,and it can provide reference of fuel processing for different boilers which require rice husk with various water contents. In this paper,we apply Page equation to reflect the drying process and obtain drying characteristic curve,then analyze the drying law. Kinetic analysis of the results of moisture migration test has been done,after which, effective moisture diffusion coefficient,activation energy and drying kinetic equation of rice husk samples are obtained in test temperature range (80 - 130 ℃) . And these results show specific influence law of temperature for effective moisture diffusion coefficient.
基金the financial support provided by National Natural Science Foundation of China (Project No.51375491)the Natural Science Foundation of Chongqing (Project No.CSTC,2014JCYJAA50021)
文摘The thermal decomposition characteristics of methyl linoleate (ML) under nitrogen and oxygen atmo- spheres were investigated, using a thermogravimetric analyzer at a heating rate of 10 ~C/min from room tem- perature to 600℃. Furthermore, the pyrolytic and kinetic characteristics of ML at different heating rates were stud- ied. The results showed that the thermal decomposition characteristics of ML under nitrogen and oxygen atmo- spheres were macroscopically similar, although ML exhibited relatively lower thermal stability under an oxy- gen atmosphere than under a nitrogen atmosphere. The initial decomposition temperature, the maximum weight loss temperature, the peak decomposition temperature, and the rate of maximum weight loss of ML under an oxygen atmosphere were much lower than those under a nitrogen atmosphere and increased with increasing heating rates under either oxygen or nitrogen atmosphere. In addition, the kinetic characteristics of thermal decomposition of ML were elucidated based on the experimental results and by the multiple linear regression method. The activation energy, pre-exponential factor, reaction order, and the kinetic equation for thermal decomposition of ML were obtained. The comparison of experimental and calculated data and the analysis of statistical errors of pyrolysis ratios demonstrated that the kinetic model was reliable for pyrolysis of ML with relative errors of about 1%. Finally, the kinetic compensation effect between the pre-exponential factors and the activation energy in the pyrolysis of ML was also confirmed.
文摘PVC(polyvinyl chloride) was isolated from waste plastic before manufacturing RPF(refuse paper & plastic fuel), and the characteristics of manufactured RPF including properties, calorific value, pyrolysis, chlorine content and kinetics analysis were analyzed. Based on the result of TGA(Thermogravimetric analysis), the kinetics characteristics was analyzed by using Kissinger method and Ozawa method which are the most common methods for obtaining activation energy, and the experimental conditions of TGA were set as follows: in a nitrogen atmosphere, with gas flow rate of 20mL/min, heating rate of 5-50 ℃/min, and maximum temperature of 800 ℃. In conclusion, the activation energy showed a tendency to gradually increase by a rise of reaction rate. Although the activation energy with pyrolysis of RPF was irregularly scattered, it was shown that the activation energy was stabilized by co-pyrolysis of RPF and additives(rice bran and sawdust).
基金Supported by National Natural Science Foundation of China( No. 50378061).
文摘Based on a systemic survey, the pyrolysis characteristics and apparent kinetics of the municipal solid waste ( MSW) under different conditions were researched using a special pyrolysis reactor, which could overcome the disadvantage of thermo-gravimetric analyzer. The thermal decomposition behaviour of MSW was investigated using thermo-gravimetric ( TG ) analysis at rates of 4.8,6.6,8.4, 12.0 and 13. 2 K/min. The pyrolysis characteristics of MSW were also studied in different function districts. The pyrolysis of MSW is a complex reaction process and three main stages are found according to the results. The first stage represents the degradation of cellulose and hemicellulose, with the maximum degradation rate occuring at 150℃ -200 ℃: the second stage represents dehydrochlorination and depolymerization of intermediate products and the differential thermogravimetric ( DTG ) curves have shoulder peaks at about 300℃: the third stage is the decomposition of the residual big molecular organic substance and lignin at 400 ℃- 600 ℃. Within the range of given experimental conditions, the results of non-linear fitting algorithm and experiment are in agreement with each other and the correlation coefficients are over0. 99. The kinetic characteristics are concerned with the material component and heating rate. The activation energy of reaction decreases with the increase of heating rate.
文摘By using the data from observation on the Chinese research vessel Xiang Yang Hong No.5 and other sources during AMEX phase II, the kinetic energy budget and circulation characteristics of the tropical storm Irma were analyzed.Irma formed on the ITCZ of the Southern Hemisphere. During the formative stage of the storm, the SE trades and monsoon westerlies on both sides of the ITCZ strengthened, and more importantly, there was a strong divergent flow in upper troposphere. These contributed to the intensification of Irma. At the time when Irma formed, the Richardson number (Ri) in middle and lower troposphere was much smaller than that prior to and post the formation.When Irma intensified rapidly, the area-averaged kinetic energy in the general flow increased in the whole troposphere . The largest contribution came from kinetic energy generation term, -[v.(?)(?)] .indicates that there existed a strong ageostrophic accetration. As to the generation term , the conversion of available potential energy to kinetic energy, - |ωα|, made the largest contribution. This illustrates the importance of internal sources and of the ensemble effect of cumulus convection to the kinetic energy.To the increase of area-averaged eddy kinetic energy during the rapid intensification of Irma, the most impor tant source in the whole troposphere was the dissipation term - [E'], that should be interpreted as the. feeding of eddy kinetic energy from smaller to larger scale disturbances. Another important source was generation term, - [v' (?)(?)'], in the lower troposphere. Rather small contribution came from the energy conversion from the kinetic energy of area-mean flow to eddy kinetic energy. Therefore, the eddy kinetic energy of the developing tropical disturbance extracted both from smaller an, .arger scale motions. The former was much more important than the latter In addition, the disturbance acting as a generator and exporter, generated and exported eddy kinetic energy to the environmental atmosphere.
基金This work is supported by the National Key Research and Development Program of China(No.2022YFC3203203)the Outstanding Youth Science Foundation of Shaanxi Province(No.2023-JC-JQ-36)the National Natural Science Foundation of China(No.52300121).
文摘As a byproduct of water treatment,drinking water treatment aluminum sludge(DWTAS)has challenges related to imperfect treatment and disposal,which has caused potential harm to human health and the environment.In this paper,heat treatment DWTAS as a supplement cementitious material was used to prepare a green cementing material.The results show that the 800℃ is considered as the optimum heat treatment temperature for DWTAS.DWTAS-800℃ is fully activated after thermal decomposition to form incompletely crystallized highly activeγ-Al_(2)O_(3) and active SiO_(2).The addition of DWTAS promoted the formation of ettringite and C-(A)-S-H gel,which could make up for the low early compressive strength of cementing materials to a certain extent.When cured for 90 days,the compressive strength of the mortar with 30% DWTAS-800℃ reached 44.86 MPa.The dynamic process was well simulated by Krstulovi′c-Dabi′c hydration kinetics model.This study provided a methodology for the fabrication of environmentally friendly and cost-effective compound cementitiousmaterials and proposed a“waste-to-resource”strategy for the sustainable management of typical solid wastes.
文摘An angular speed,acceleration and tangential leakage of a synchronal rotary compressor in which both bladed rotor and a cylinder are discussed.The calculation formulae of revolving speed of cylinder and relative speed between the cylinder and bladed rotor are deduced detailedly in this paper.The variation of tangential speed and cylinder acceleration with angular position is investigated for a complete cycle.And some key parameters affected the relative speed are found out,viz,the relative speed depends on the radius of the cylinder and rotary speed of the axis,and the ratio of the cylinder to bladed rotor has not too much influence.It is the theoretic basis of designing and optimizing of structure characteristic of a synchronal rotary compressor.Also a computing formula of leakage related with rotary speed is deduced.It could supply references to thermodynamic calculating.
基金Project(51205102)supported by the National Natural Science Foundation of ChinaProject(2012M511401)supported by the Postdoctoral Science Foundation of China
文摘The hydrogen absorption characteristics and microstructural evolution of TC21 titanium alloy were investigated by kinetic model analysis, optical microscopy (OM) and X-ray diffraction (XRD). The results show that the hydrogen absorption reaction occurred during the hydrogen absorption process of TC21 titanium alloy can be divided into two different stages according to the hydrogen absorption kinetics. After hydrogenation, the microstructure of TC21 titanium alloy changes obviously. Just a little hydrogen will change the contrast of transformedβphase. The contrast ofα phase darkens when the hydrogen content in TC21 titanium alloy exceeds 0.5% (mass fraction). The phase/grain boundaries become ambiguous or even vanished, andβ phase becomes the main phase instead ofα phase when the hydrogen content reaches 0.625%. Moreover,α phase disappears when the hydrogen content reaches 1.065%. Additionally, the XRD analysis shows that α' martensite and FCCδ hydride appear in the hydrogenated alloy. According to the microstructures and XRD analysis, the schematic diagrams of hydrogen diffusion process in TC21 titanium alloy were established.
文摘The degradation kinetics of strains P05 and P07 and the degradation effects of mixed strain on Microcystis aeruginosa were studied. The results showed that: (1) The degradation processes of strains P05 and P07 on Microcystis aeruginosa accorded with the first-order reaction model when the range of Chl-a concentration was from 0 to 1500 μg/L. (2) The initial bacterium densities had a strong influence on the degradation velocity. The greater the initial bacterium density was, the faster the degradation was. The degradation velocity constants of P05 were 0.1913, 0.2175 and 0.3092 respectively, when bacterium densities were 4.8×10 5, 4.8×10 6, 2.4×10 7 cells/ml. For strain P07, they were 0.1509, 0.1647 and 0.2708. The degradation velocity constant of strain P05 was higher than that of P07 when the bacterium density was under 4.8×10 5 cells/ml, but the constant increasing of P07 was quicker than that of P05. (3) The degradation effects of P05 and P07 strains did not antagonize. When the concentration of Chl-a was high, the degradation effects of mixed strain excelled that of any single strains. But with the decrease of the Chl-a concentration, this advantage was not clear. When the concentration was less than 180 μg/L, the degradation effects of mixed were consistent with that of strain P07.
文摘Crystallization kinetics of Al83Y10Ni7(at%) amorphous alloys prepared bymelt spinning was studied by differential scanning calorimetry (DSC). Three or fourstages of transforniation from amorphous to equilibrium state can be distinguished atheating rate 1  ̄ 40K / min. Apparent activation energies are calculated according to themethods of Kissinger, Ozawa and Arrhernius equation. An amoaphous phase with highstructural and heat stability was obtained in the vicinity of Al83Y10,Ni7. The isotheimalcrystallization kinetics of the first peak, in the range of 0. 15 ̄ 0.85, was found to be inagreement with John-Mell-Avrami equation with n = 2.5. Nucleation and growth dur-ing isothennal crystallization of the first stage for Al83Y10Ni7 amorpohous were ap-proached by introducing the concept of local Avrami exponent and local activation en-ergy.