Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying expl...Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology.展开更多
Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media withi...Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks.展开更多
The Indo-Gangetic Plain(IGP)is one of the most seismically vulnerable areas due to its proximity to the Himalayas.Geographic information system(GIS)-based seismic characterization of the IGP was performed based on the...The Indo-Gangetic Plain(IGP)is one of the most seismically vulnerable areas due to its proximity to the Himalayas.Geographic information system(GIS)-based seismic characterization of the IGP was performed based on the degree of deformation and fractal dimension.The zone between the Main Boundary Thrust(MBT)and the Main Central Thrust(MCT)in the Himalayan Mountain Range(HMR)experienced large variations in earthquake magnitude,which were identified by Number-Size(NS)fractal modeling.The central IGP zone experienced only moderate to low mainshock levels.Fractal analysis of earthquake epicenters reveals a large scattering of earthquake epicenters in the HMR and central IGP zones.Similarly,the fault fractal analysis identifies the HMR,central IGP,and south-western IGP zones as having more faults.Overall,the seismicity of the study region is strong in the central IGP,south-western IGP,and HMR zones,moderate in the western and southern IGP,and low in the northern,eastern,and south-eastern IGP zones.展开更多
Maps, essential tools for portraying the Earth’s surface, inherently introduce distortions to geographical features. While various quantification methods exist for assessing these distortions, they often fall short w...Maps, essential tools for portraying the Earth’s surface, inherently introduce distortions to geographical features. While various quantification methods exist for assessing these distortions, they often fall short when evaluating actual geographic features. In our study, we took a novel approach by analyzing map projection distortion from a geometric perspective. We computed the fractal dimensions of different stretches of coastline before and after projection using the divide-and-conquer algorithm and image processing. Our findings revealed that map projections, even when preserving basic shapes, inevitably stretch and compress coastlines in diverse directions. This analysis method provides a more realistic and practical way to measure map-induced distortions, with significant implications for cartography, geographic information systems (GIS), and geomorphology. By bridging the gap between theoretical analysis and real-world features, this method greatly enhances accuracy and practicality when evaluating map projections.展开更多
In this paper, the initial boundary value problem of a class of nonlinear generalized Kolmogorov-Petrovlkii-Piskunov equations is studied. The existence and uniqueness of the solution and the bounded absorption set ar...In this paper, the initial boundary value problem of a class of nonlinear generalized Kolmogorov-Petrovlkii-Piskunov equations is studied. The existence and uniqueness of the solution and the bounded absorption set are proved by the prior estimation and the Galerkin finite element method, thus the existence of the global attractor is proved and the upper bound estimate of the global attractor is obtained.展开更多
The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was d...The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was developed based on the fractal theory and the computer image processing technology, was explored to describe the pore structure of porous metal materials. Furthermore, the fractal dimension of pore structure was calculated by the soft and the effects of magnification and porosity on ffactal dimension were also discussed. The results show that the fractal dimension decreases with increase in the magnification, while it increases continuously with the porosity enhancing. The interrelationship between the fractal dimension and the magnification or porosity can be presented by the equation of D=α_0exp(-x/α_1)+α_2和D=k_2-(k_1-k_2)/[1+exp((θ-k_0)/k_3)], respectively.展开更多
Surface electromyogram (EMG) signals were identified by fractal dimension.Two patterns of surface EMG signals were acquired from 30 healthy volunteers' right forearm flexor respectively in the process of forearm su...Surface electromyogram (EMG) signals were identified by fractal dimension.Two patterns of surface EMG signals were acquired from 30 healthy volunteers' right forearm flexor respectively in the process of forearm supination (FS) and forearm pronation (FP).After the raw action surface EMG (ASEMG) signal was decomposed into several sub-signals with wavelet packet transform (WPT),five fractal dimensions were respectively calculated from the raw signal and four sub-signals by the method based on fuzzy self-similarity.The results show that calculated from the sub-signal in the band 0 to 125 Hz,the fractal dimensions of FS ASEMG signals and FP ASEMG signals distributed in two different regions,and its error rate based on Bayes decision was no more than 2.26%.Therefore,the fractal dimension is an appropriate feature by which an FS ASEMG signal is distinguished from an FP ASEMG signal.展开更多
[Objective] The aim was to discuss the spatial pattern changes of land use in Tianjin new coastal area based on fractal dimensions.[Method] By dint of remote and geographic information system technology to obtain the ...[Objective] The aim was to discuss the spatial pattern changes of land use in Tianjin new coastal area based on fractal dimensions.[Method] By dint of remote and geographic information system technology to obtain the data of urban land use in new coastal area from 1993 to 2008,the boundary dimension,radius dimension and information dimension of each land use type were calculated based on fractal dimension.In addition,the revealed land use spatial dimension changes characteristics were analyzed.[Result] The spatial distribution of each land use type in new costal area had distinct fractal characteristics.And,the amount and changes of three types of dimension values effectively revealed the changes of complicatedness,centeredness and evenness of spatial pattern of land use in the study area.The boundary dimension of unused land and salty earth increased incessantly,which suggested its increasing complicatedness.The boundary of the port and wharf and shoal land was getting simpler.The radius dimension of the cultivated land was larger than 2,which suggested that its area spread from center to the surroundings;the one in salty land and waters distributed evenly within different radius space to the center of the city;the one in other land use types reduced gradually from center to the surroundings.The information dimension value in the woodland and orchard land,unused land and shoal land was small,and was in obvious concentrated distribution;the spatial distribution of cultivated and salty land concentrated in the outside area;the construction area in the port and wharf spread gradually on the basis of original state;the spatial distribution of waters and residents and mines were even.[Conclusion] Applying fractal dimensions to the study of spatial pattern changes of urban land use can make up for some disadvantages in classical urban spatial pattern quantitative research,which has favorable practical value.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
A simplified procedure is developed to acquire the surface fractal dimension of porous media utilizing the PSD information from mercury porosimetry or other analyses.The self similarity of the inner surface of Sierpi...A simplified procedure is developed to acquire the surface fractal dimension of porous media utilizing the PSD information from mercury porosimetry or other analyses.The self similarity of the inner surface of Sierpinski sponge is analyzed,the result of which demonstrates that the inner surface of Sierpinski sponge is not scale invariant over the whole range of scale transformations.By applying the simplified procedure to analyze and treat the PSD information of Sierpinski sponge over the scale invariant range,it is found that the surface fractal dimension calculated by the scaling relation is in very good agreement with its theoretical value,which virtually provides a theoretical affirmation of the method.展开更多
The split-Hopkinson pressure bar(SHPB)and digital image correlation(DIC)techniques are combined to analyze the dynamic compressive failure process of coal samples,and the box fractal dimension is used to quantitativel...The split-Hopkinson pressure bar(SHPB)and digital image correlation(DIC)techniques are combined to analyze the dynamic compressive failure process of coal samples,and the box fractal dimension is used to quantitatively analyze the dynamic changes in the coal sample cracks under impact load conditions with different loading rates.The experimental results show that the fractal dimension can quantitatively describe the evolution process of coal fractures under dynamic load.During the dynamic compression process,the evolution of the coal sample cracks presents distinct stages.In the crack propagation stage,the fractal dimension increases rapidly with the progress of loading,and in the crack widening stage,the fractal dimension increases slowly with the progress of loading.The initiation of the crack propagation phase of the coal samples gradually occurs more quickly with increasing loading rate;the initial cracks appear earlier.At the same loading time point,when the loading rate is greater,the fractal dimension of the cracks observed in the coal sample is greater.展开更多
Food dye Brilliant Blue was introduced as the tracer in a dye-tracing experiment to obtain dye profile patterns of sandy loam soil, aeolian sandy soil, percolating paddy soil and permeable paddy soil. The dyed soil pr...Food dye Brilliant Blue was introduced as the tracer in a dye-tracing experiment to obtain dye profile patterns of sandy loam soil, aeolian sandy soil, percolating paddy soil and permeable paddy soil. The dyed soil profiles were then photographed and the photos were scanned into a computer. Edited with certain software, only the dyed areas were left on the profile photos, which indicted the preferential flow paths for water and solute transport. Fractal dimensions of the dye patterns were calculated according to Arnold's function. Soil particle size distribution was analyzed by pipette method. The regression analysis showed that there was significant relationship between soil clay content and fractal dimension D of the dye pattern of soil profile. Based on the experiment results, the possibility of introducing fractal dimension to estimation of soil sensitivity to preferential flow is discussed.展开更多
Fractal geometry is an important method in soil science,and many studies have used fractal theory to examine soil properties and the relationships with other eco-environmental factors.However,there have been few studi...Fractal geometry is an important method in soil science,and many studies have used fractal theory to examine soil properties and the relationships with other eco-environmental factors.However,there have been few studies examining soil particle volume fractal dimension in alpine grasslands.To study the volume fractal dimension of soil particles (D) and its relationships with soil salt,soil nutrient and plant species diversity,we conducted an experiment on an alpine grassland under different disturbance degrees:non-disturbance (N0),light disturbance (L),moderate disturbance (M) and heavy disturbance (H).The results showed that (1) Ds varied from 2.573 to 2.635 among the different disturbance degrees and increased with increasing degrees of disturbance.(2) Shannon-Wiener diversity index,Pielou's evenness index and Margalef richness index reached their highest values at the M degree,indicating that moderate disturbance is beneficial to the increase of plant species diversity.(3) In the L and M degrees,there was a significant positive correlation between D and clay content and a significant negative correlation between D and soil organic matter (SOM).In the H degree,D was significantly and positively correlated with total salt (TS).The results suggested that to a certain extent,D can be used to characterize the uniformity of soil texture in addition to soil fertility characteristics.(4) For the L degree,there was a significant negative correlation between D and the Shannon-Wiener diversity index; while for the M degree,there was a significant negative correlation between D and Pielou's evenness index.展开更多
Based on the geological conditions of coal mining face No.15-14120 at No.8 mine of Pingdingshan coal mining group,the real-time evolution of coal-roof crack network with working face advancing was collected with the h...Based on the geological conditions of coal mining face No.15-14120 at No.8 mine of Pingdingshan coal mining group,the real-time evolution of coal-roof crack network with working face advancing was collected with the help of intrinsically safe borehole video instrument.And according to the geology of this working face,a discrete element model was calculated by UDEC.Combining in situ experimental data with numerical results,the relationship between the fractal dimension of boreholes'wall and the distribution of advanced abutment pressure was studied under the condition of mining advance.The results show that the variation tendency of fractal dimension and the abutment pressure has the same characteristic value.The distance between working face and the peak value of the abutment pressure has a slight increasing trend with the advancing of mining-face.When the working face is set as the original point,the trend of fractal dimension from the far place to the origin can be divided into three phases:constant,steady increasing and constant.And the turning points of these phases are the max-influencing distance(50 m)and peak value(15 m)of abutment pressure.展开更多
The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicat...The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicate the corresponding relationship.展开更多
Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyze...Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyzed the fracture surface characteristics induced by supercritical carbon dioxide(SC-CO_(2))and water in open-hole and perforation completion conditions under triaxial stresses.A simple calculation method was proposed to quantitatively analyze the fracture surface area and roughness in macro-level based on three-dimensional(3D)scanning data.In micro-level,scanning electron micrograph(SEM)was used to analyze the features of fracture surface.The results showed that the surface area of the induced fracture increases with perforation angle for both SC-CO_(2)and water fracturing,and the surface area of SC-CO_(2)-induced fracture is 6.49%e58.57%larger than that of water-induced fracture.The fractal dimension and surface roughness of water-induced fractures increase with the increase in perforation angle,while those of SC-CO_(2)-induced fractures decrease with the increasing perforation angle.A considerable number of microcracks and particle peeling pits can be observed on SC-CO_(2)-induced fracture surface while there are more flat particle surfaces in water-induced fracture surface through SEM images,indicating that fractures tend to propagate along the boundary of the particle for SC-CO_(2)fracturing while water-induced fractures prefer to cut through particles.These findings are of great significance for analyzing fracture mechanism and evaluating fracturing stimulation performance.展开更多
The characteristics of broken surfaces were r esearched by a scanning electron microscope (SEM) and a reflection microscope, a nd the fractal dimensions of broken surfaces were measured by the Slit Island me thod. Th...The characteristics of broken surfaces were r esearched by a scanning electron microscope (SEM) and a reflection microscope, a nd the fractal dimensions of broken surfaces were measured by the Slit Island me thod. The experimental results indicate that the broken surface of aluminum elec tric porcelain is a fractal body in statistics, and the fractal dimensions of br oken surfaces are different with the different amplification multiple value.In a ll of measured fractal dimensions,both of values measured in 100× under reflect ion microscope and in 500× under SEM are maximum, whereas the values measur ed in 63× under reflection microscope and in 2000× under SEM are obviously min imum. The fractal dimensions of broken surfaces are also affected by the degrees of gray comparison and the kinds of measuring methods. The relationships betwee n the fractal dimensions of broken surfaces and porcelain bend strengths are tha t they are in positive correlation on the low multiples and in negative correlat ion on the high multiples.展开更多
As the scale of residual oil treatment increases and cleaner production improves in China,slurry bubble column reactors face many challenges and opportunities for residual oil hydrogenation technology.The internals de...As the scale of residual oil treatment increases and cleaner production improves in China,slurry bubble column reactors face many challenges and opportunities for residual oil hydrogenation technology.The internals development is critical to adapt the long-term stable operation.In this paper,the volumetric mass transfer coefficient,gas holdup and bubble size in a gas-liquid up-flow column are studied with two kinds of internals.The gas holdup and volumetric mass transfer coefficient increase by 120% and 42% when the fractal dimension of bubbles increases from 0.56 to 2.56,respectively.The enhanced mass transfer processing may improve the coke suppression ability in the slurry reactor for residual oil treatment.The results can be useful for the exploration of reacting conditions,scale-up strategies,and oil adaptability.This work is valuable for the design of reactor systems and technological processes.展开更多
The fractal dimension(FD) of surfaces has been widely used to characterize the properties of materials.However,most of the previous researches were concentrated on the correlation between the FD of surfaces and mech...The fractal dimension(FD) of surfaces has been widely used to characterize the properties of materials.However,most of the previous researches were concentrated on the correlation between the FD of surfaces and mechanical properties of materials,such as impact energy and fracture toughness,etc.The aim of this paper is to characterize the spheroidization grade and strength of 15CrMo steel through determination of FD of cementite phase on the basis of two-dimension microstructural image.Two methods,namely slit-island method(SIM) and box-counting method(BCM),are used to determine the value of FD.It is found that the FD value evaluated by using BCM is generally higher than that evaluated by SIM.This phenomenon may be due to the difference in the principles used in different methods.Whether SIM or BCM is used,the spheroidization grade in 15CrMo steel linearly increases with decreasing the value of FD.The relationship between the FD value,D,and spheroidization grade,Sg,can be approximately expressed as D≌-0.11Sg+A,where A is a constant value which is depended on the evaluation method.Both the ultimate strength and the yielding strength of 15CrMo steel increase with increasing FD of cementite phase.There may be a common relationship between the FD of cementite phase and strength of 15CrMo steel.When the FD of cementite phase in 15CrMo steel is determined,the strength of this steel can be evaluated.The present paper can provide a novel method to evaluate the strength and spheroidization grade of carbon steel through determination of fractal dimension(FD) of cementite phase.展开更多
基金funded by the National Key Research and Development Program of China(No.2020YFA0711800)the National Science Fund for Distinguished Young Scholars(No.51925404)+2 种基金the National Natural Science Foundation of China(No.12372373)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_2909)the Graduate Innovation Program of China University of Mining and Technology(No.2024WLKXJ134)。
文摘Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology.
基金supported by the National Natural Science Foundation of China (Nos.52374078 and 52074043)the Fundamental Research Funds for the Central Universities (No.2023CDJKYJH021)。
文摘Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks.
文摘The Indo-Gangetic Plain(IGP)is one of the most seismically vulnerable areas due to its proximity to the Himalayas.Geographic information system(GIS)-based seismic characterization of the IGP was performed based on the degree of deformation and fractal dimension.The zone between the Main Boundary Thrust(MBT)and the Main Central Thrust(MCT)in the Himalayan Mountain Range(HMR)experienced large variations in earthquake magnitude,which were identified by Number-Size(NS)fractal modeling.The central IGP zone experienced only moderate to low mainshock levels.Fractal analysis of earthquake epicenters reveals a large scattering of earthquake epicenters in the HMR and central IGP zones.Similarly,the fault fractal analysis identifies the HMR,central IGP,and south-western IGP zones as having more faults.Overall,the seismicity of the study region is strong in the central IGP,south-western IGP,and HMR zones,moderate in the western and southern IGP,and low in the northern,eastern,and south-eastern IGP zones.
文摘Maps, essential tools for portraying the Earth’s surface, inherently introduce distortions to geographical features. While various quantification methods exist for assessing these distortions, they often fall short when evaluating actual geographic features. In our study, we took a novel approach by analyzing map projection distortion from a geometric perspective. We computed the fractal dimensions of different stretches of coastline before and after projection using the divide-and-conquer algorithm and image processing. Our findings revealed that map projections, even when preserving basic shapes, inevitably stretch and compress coastlines in diverse directions. This analysis method provides a more realistic and practical way to measure map-induced distortions, with significant implications for cartography, geographic information systems (GIS), and geomorphology. By bridging the gap between theoretical analysis and real-world features, this method greatly enhances accuracy and practicality when evaluating map projections.
文摘In this paper, the initial boundary value problem of a class of nonlinear generalized Kolmogorov-Petrovlkii-Piskunov equations is studied. The existence and uniqueness of the solution and the bounded absorption set are proved by the prior estimation and the Galerkin finite element method, thus the existence of the global attractor is proved and the upper bound estimate of the global attractor is obtained.
基金Project(2011CB610302) supported by the National Basic Research Program of ChinaProjects(51074130,51134003) supported by the National Natural Science Foundation of ChinaProject(20110491699) supported by the National Science Foundation for Post-doctoral Scientists of China
文摘The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was developed based on the fractal theory and the computer image processing technology, was explored to describe the pore structure of porous metal materials. Furthermore, the fractal dimension of pore structure was calculated by the soft and the effects of magnification and porosity on ffactal dimension were also discussed. The results show that the fractal dimension decreases with increase in the magnification, while it increases continuously with the porosity enhancing. The interrelationship between the fractal dimension and the magnification or porosity can be presented by the equation of D=α_0exp(-x/α_1)+α_2和D=k_2-(k_1-k_2)/[1+exp((θ-k_0)/k_3)], respectively.
基金The National Natural Science Foundation of China(No.60171006)the National Basic Research Programof China (973 Pro-gram) (No.2005CB724303).
文摘Surface electromyogram (EMG) signals were identified by fractal dimension.Two patterns of surface EMG signals were acquired from 30 healthy volunteers' right forearm flexor respectively in the process of forearm supination (FS) and forearm pronation (FP).After the raw action surface EMG (ASEMG) signal was decomposed into several sub-signals with wavelet packet transform (WPT),five fractal dimensions were respectively calculated from the raw signal and four sub-signals by the method based on fuzzy self-similarity.The results show that calculated from the sub-signal in the band 0 to 125 Hz,the fractal dimensions of FS ASEMG signals and FP ASEMG signals distributed in two different regions,and its error rate based on Bayes decision was no more than 2.26%.Therefore,the fractal dimension is an appropriate feature by which an FS ASEMG signal is distinguished from an FP ASEMG signal.
基金Supported by National Natural Science Fund Program(40705038)~~
文摘[Objective] The aim was to discuss the spatial pattern changes of land use in Tianjin new coastal area based on fractal dimensions.[Method] By dint of remote and geographic information system technology to obtain the data of urban land use in new coastal area from 1993 to 2008,the boundary dimension,radius dimension and information dimension of each land use type were calculated based on fractal dimension.In addition,the revealed land use spatial dimension changes characteristics were analyzed.[Result] The spatial distribution of each land use type in new costal area had distinct fractal characteristics.And,the amount and changes of three types of dimension values effectively revealed the changes of complicatedness,centeredness and evenness of spatial pattern of land use in the study area.The boundary dimension of unused land and salty earth increased incessantly,which suggested its increasing complicatedness.The boundary of the port and wharf and shoal land was getting simpler.The radius dimension of the cultivated land was larger than 2,which suggested that its area spread from center to the surroundings;the one in salty land and waters distributed evenly within different radius space to the center of the city;the one in other land use types reduced gradually from center to the surroundings.The information dimension value in the woodland and orchard land,unused land and shoal land was small,and was in obvious concentrated distribution;the spatial distribution of cultivated and salty land concentrated in the outside area;the construction area in the port and wharf spread gradually on the basis of original state;the spatial distribution of waters and residents and mines were even.[Conclusion] Applying fractal dimensions to the study of spatial pattern changes of urban land use can make up for some disadvantages in classical urban spatial pattern quantitative research,which has favorable practical value.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
基金Supported by Visiting Scholar Foundation of Key Laboratory.inUniversity
文摘A simplified procedure is developed to acquire the surface fractal dimension of porous media utilizing the PSD information from mercury porosimetry or other analyses.The self similarity of the inner surface of Sierpinski sponge is analyzed,the result of which demonstrates that the inner surface of Sierpinski sponge is not scale invariant over the whole range of scale transformations.By applying the simplified procedure to analyze and treat the PSD information of Sierpinski sponge over the scale invariant range,it is found that the surface fractal dimension calculated by the scaling relation is in very good agreement with its theoretical value,which virtually provides a theoretical affirmation of the method.
基金Projects(51822403,51827901)supported by the National Natural Science Foundation of ChinaProject(2019ZT08G315)supported by the Department of Science and Technology of Guangdong Province,China。
文摘The split-Hopkinson pressure bar(SHPB)and digital image correlation(DIC)techniques are combined to analyze the dynamic compressive failure process of coal samples,and the box fractal dimension is used to quantitatively analyze the dynamic changes in the coal sample cracks under impact load conditions with different loading rates.The experimental results show that the fractal dimension can quantitatively describe the evolution process of coal fractures under dynamic load.During the dynamic compression process,the evolution of the coal sample cracks presents distinct stages.In the crack propagation stage,the fractal dimension increases rapidly with the progress of loading,and in the crack widening stage,the fractal dimension increases slowly with the progress of loading.The initiation of the crack propagation phase of the coal samples gradually occurs more quickly with increasing loading rate;the initial cracks appear earlier.At the same loading time point,when the loading rate is greater,the fractal dimension of the cracks observed in the coal sample is greater.
基金Project supported by the National Key Basic Research Support FOundation(NKBRSF) of China(No.G19990ll708) and the Guangxi Uni,rsitv Science funds China(No.1701).
文摘Food dye Brilliant Blue was introduced as the tracer in a dye-tracing experiment to obtain dye profile patterns of sandy loam soil, aeolian sandy soil, percolating paddy soil and permeable paddy soil. The dyed soil profiles were then photographed and the photos were scanned into a computer. Edited with certain software, only the dyed areas were left on the profile photos, which indicted the preferential flow paths for water and solute transport. Fractal dimensions of the dye patterns were calculated according to Arnold's function. Soil particle size distribution was analyzed by pipette method. The regression analysis showed that there was significant relationship between soil clay content and fractal dimension D of the dye pattern of soil profile. Based on the experiment results, the possibility of introducing fractal dimension to estimation of soil sensitivity to preferential flow is discussed.
基金financially supported by the National Basic Research Program of China(2009CB825103)
文摘Fractal geometry is an important method in soil science,and many studies have used fractal theory to examine soil properties and the relationships with other eco-environmental factors.However,there have been few studies examining soil particle volume fractal dimension in alpine grasslands.To study the volume fractal dimension of soil particles (D) and its relationships with soil salt,soil nutrient and plant species diversity,we conducted an experiment on an alpine grassland under different disturbance degrees:non-disturbance (N0),light disturbance (L),moderate disturbance (M) and heavy disturbance (H).The results showed that (1) Ds varied from 2.573 to 2.635 among the different disturbance degrees and increased with increasing degrees of disturbance.(2) Shannon-Wiener diversity index,Pielou's evenness index and Margalef richness index reached their highest values at the M degree,indicating that moderate disturbance is beneficial to the increase of plant species diversity.(3) In the L and M degrees,there was a significant positive correlation between D and clay content and a significant negative correlation between D and soil organic matter (SOM).In the H degree,D was significantly and positively correlated with total salt (TS).The results suggested that to a certain extent,D can be used to characterize the uniformity of soil texture in addition to soil fertility characteristics.(4) For the L degree,there was a significant negative correlation between D and the Shannon-Wiener diversity index; while for the M degree,there was a significant negative correlation between D and Pielou's evenness index.
基金financial support from the State Key Basic Research Program of China(Nos.2011CB201201and 2010CB226802)the National Natural Science Foundation of China(No.51204112)
文摘Based on the geological conditions of coal mining face No.15-14120 at No.8 mine of Pingdingshan coal mining group,the real-time evolution of coal-roof crack network with working face advancing was collected with the help of intrinsically safe borehole video instrument.And according to the geology of this working face,a discrete element model was calculated by UDEC.Combining in situ experimental data with numerical results,the relationship between the fractal dimension of boreholes'wall and the distribution of advanced abutment pressure was studied under the condition of mining advance.The results show that the variation tendency of fractal dimension and the abutment pressure has the same characteristic value.The distance between working face and the peak value of the abutment pressure has a slight increasing trend with the advancing of mining-face.When the working face is set as the original point,the trend of fractal dimension from the far place to the origin can be divided into three phases:constant,steady increasing and constant.And the turning points of these phases are the max-influencing distance(50 m)and peak value(15 m)of abutment pressure.
文摘The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicate the corresponding relationship.
基金National Natural Science Foundation of China(Grant No.51804318)the China Postdoctoral Science Foundation Founded Project(Grant No.2019M650963)National Key Basic Research and Development Program of China(Grant No.2014CB239203).
文摘Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyzed the fracture surface characteristics induced by supercritical carbon dioxide(SC-CO_(2))and water in open-hole and perforation completion conditions under triaxial stresses.A simple calculation method was proposed to quantitatively analyze the fracture surface area and roughness in macro-level based on three-dimensional(3D)scanning data.In micro-level,scanning electron micrograph(SEM)was used to analyze the features of fracture surface.The results showed that the surface area of the induced fracture increases with perforation angle for both SC-CO_(2)and water fracturing,and the surface area of SC-CO_(2)-induced fracture is 6.49%e58.57%larger than that of water-induced fracture.The fractal dimension and surface roughness of water-induced fractures increase with the increase in perforation angle,while those of SC-CO_(2)-induced fractures decrease with the increasing perforation angle.A considerable number of microcracks and particle peeling pits can be observed on SC-CO_(2)-induced fracture surface while there are more flat particle surfaces in water-induced fracture surface through SEM images,indicating that fractures tend to propagate along the boundary of the particle for SC-CO_(2)fracturing while water-induced fractures prefer to cut through particles.These findings are of great significance for analyzing fracture mechanism and evaluating fracturing stimulation performance.
基金Funded by the Natural Science Foundation of Shaanxi Province(No.2003E225)
文摘The characteristics of broken surfaces were r esearched by a scanning electron microscope (SEM) and a reflection microscope, a nd the fractal dimensions of broken surfaces were measured by the Slit Island me thod. The experimental results indicate that the broken surface of aluminum elec tric porcelain is a fractal body in statistics, and the fractal dimensions of br oken surfaces are different with the different amplification multiple value.In a ll of measured fractal dimensions,both of values measured in 100× under reflect ion microscope and in 500× under SEM are maximum, whereas the values measur ed in 63× under reflection microscope and in 2000× under SEM are obviously min imum. The fractal dimensions of broken surfaces are also affected by the degrees of gray comparison and the kinds of measuring methods. The relationships betwee n the fractal dimensions of broken surfaces and porcelain bend strengths are tha t they are in positive correlation on the low multiples and in negative correlat ion on the high multiples.
基金the National Natural Science Foundation of China(51678238,51722806,51608325,21908057)National Key R&D Program of China(2018YFC1802704,2018YFC1801904)+1 种基金China Postdoctoral Science Foundation funded project(2018M641942)Shanghai Sailing Program(19YF1411800)for financial support.
文摘As the scale of residual oil treatment increases and cleaner production improves in China,slurry bubble column reactors face many challenges and opportunities for residual oil hydrogenation technology.The internals development is critical to adapt the long-term stable operation.In this paper,the volumetric mass transfer coefficient,gas holdup and bubble size in a gas-liquid up-flow column are studied with two kinds of internals.The gas holdup and volumetric mass transfer coefficient increase by 120% and 42% when the fractal dimension of bubbles increases from 0.56 to 2.56,respectively.The enhanced mass transfer processing may improve the coke suppression ability in the slurry reactor for residual oil treatment.The results can be useful for the exploration of reacting conditions,scale-up strategies,and oil adaptability.This work is valuable for the design of reactor systems and technological processes.
基金supported by National Natural Science Foundations ofChina (Grant Nos. 50835003,50805047,10972078)National Hi-tech Research and Development Program of China (863 Program,Grant No.2009AA04Z421)
文摘The fractal dimension(FD) of surfaces has been widely used to characterize the properties of materials.However,most of the previous researches were concentrated on the correlation between the FD of surfaces and mechanical properties of materials,such as impact energy and fracture toughness,etc.The aim of this paper is to characterize the spheroidization grade and strength of 15CrMo steel through determination of FD of cementite phase on the basis of two-dimension microstructural image.Two methods,namely slit-island method(SIM) and box-counting method(BCM),are used to determine the value of FD.It is found that the FD value evaluated by using BCM is generally higher than that evaluated by SIM.This phenomenon may be due to the difference in the principles used in different methods.Whether SIM or BCM is used,the spheroidization grade in 15CrMo steel linearly increases with decreasing the value of FD.The relationship between the FD value,D,and spheroidization grade,Sg,can be approximately expressed as D≌-0.11Sg+A,where A is a constant value which is depended on the evaluation method.Both the ultimate strength and the yielding strength of 15CrMo steel increase with increasing FD of cementite phase.There may be a common relationship between the FD of cementite phase and strength of 15CrMo steel.When the FD of cementite phase in 15CrMo steel is determined,the strength of this steel can be evaluated.The present paper can provide a novel method to evaluate the strength and spheroidization grade of carbon steel through determination of fractal dimension(FD) of cementite phase.