期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Mechanism of Fractional Melting in the Splashed Coating on BOF Lining
1
作者 ShengWen Wu Shuhuan Wang +1 位作者 Shantong Jin Runhong Ma(Metallurgy School, University of Science and Technology Beijing, Bejing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2000年第2期92-95,共4页
With the self-made equipment, the benavior of the splashed slag coating was studied by the thermo-simulation. The influenceof TFe, basicity and heating rate of slag on the occurrence of fractional melting was investig... With the self-made equipment, the benavior of the splashed slag coating was studied by the thermo-simulation. The influenceof TFe, basicity and heating rate of slag on the occurrence of fractional melting was investigated. Furthermore, the composition variationof slag in different stages of the heating process was also discussed, and the mechanism of fractional me1ting was explained. In addition,the exploitation of this phenomenon in practice was also discussed. 展开更多
关键词 slag splashing splashed slag coating mechanism of fractional melting
下载PDF
Formation of anorthosite on the Moon through magma ocean fractional crystallization 被引量:2
2
作者 Tatsuyuki Arai Shigenori Maruyama 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第2期299-308,共10页
Lunar anorthosite is a major rock of the lunar highlands,which formed as a result of plagioclasefloatation in the lunar magma ocean(LMO).Constraints on the sufficient conditions that resulted in the formation of a t... Lunar anorthosite is a major rock of the lunar highlands,which formed as a result of plagioclasefloatation in the lunar magma ocean(LMO).Constraints on the sufficient conditions that resulted in the formation of a thick pure anorthosite(mode of plagioclase 〉95 vol.%) is a key to reveal the early magmatic evolution of the terrestrial planets.To form the pure lunar anorthosite,plagioclase should have separated from the magma ocean with low crystal fraction.Crystal networks of plagioclase and mafic minerals develop when the crystal fraction in the magma(φ) is higher than ca.40-60 vol.%,which inhibit the formation of pure anorthosite.In contrast,when φ is small,the magma ocean is highly turbulent,and plagioclase is likely to become entrained in the turbulent magma rather than separated from the melt.To determine the necessary conditions in which anorthosite forms from the LMO,this study adopted the energy criterion formulated by Solomatov.The composition of melt,temperature,and pressure when plagioclase crystallizes are constrained by using MELTS/pMELTS to calculate the density and viscosity of the melt.When plagioclase starts to crystallize,the Mg~# of melt becomes 0.59 at 1291 C.The density of the melt is smaller than that of plagioclase for P 〉 2.1 kbar(ca.50 km deep),and the critical diameter of plagioclase to separate from the melt becomes larger than the typical crystal diameter of plagioclase(1.8-3 cm).This suggests that plagioclase is likely entrained in the LMO just after the plagioclase starts to crystallize.When the Mg~# of melt becomes 0.54 at 1263 C,the density of melt becomes larger than that of plagioclase even for 0 kbar.When the Mg~# of melt decreases down to 0.46 at 1218 C,the critical diameter of plagioclase to separate from the melt becomes 1.5-2.5 cm,which is nearly equal to the typical plagioclase of the lunar anorthosite.This suggests that plagioclase could separate from the melt.One of the differences between the Earth and the Moon is the presence of water.If the terrestrial magma ocean was saturated with H_2O,plagioclase could not crystallize,and anorthosite could not form. 展开更多
关键词 Moon Anorthosite Magma ocean MELTS fractional crystallization
下载PDF
Determination of Arctic melt pond fraction and sea ice roughness from Unmanned Aerial Vehicle (UAV) imagery 被引量:1
3
作者 WANG Mingfeng SU Jie +5 位作者 LI Tao WANG Xiaoyu JI Qing CAO Yong LIN Long LIU Yilin 《Advances in Polar Science》 2018年第3期181-189,共9页
Melt ponds on Arctic sea ice are of great significance in the study of the heat balance in the ocean mixed layer, mass and salt balances of Arctic sea ice, and other aspects of the earth-atmosphere system. During the ... Melt ponds on Arctic sea ice are of great significance in the study of the heat balance in the ocean mixed layer, mass and salt balances of Arctic sea ice, and other aspects of the earth-atmosphere system. During the 7th Chinese National Arctic Research Expedition, aerial photographs were taken from an Unmanned Aerial Vehicle over an ice floe in the Canada Basin. Using threshold discrimination and three-dimensional modeling, we estimated a melt pond fraction of 1.63% and a regionally averaged surface roughness of 0.12 for the study area. In view- of the particularly foggy environment of the Arctic, aerial images were defogged using an improved dark channel prior based image defog algorithm, especially adapted for the special conditions of sea ice images. An aerial photo mosaic was generated, melt ponds were identified from the mosaic image and melt pond fractions were calculated. Three-dimensional modeling techniques were used to generate a digital elevation model allowing relative elevation and roughness of the sea ice surface to be estimated. Analysis of the relationship between the distributions of melt ponds and sea ice surface roughness show-s that melt ponds are smaller on sea ice with higher surface roughness, while broader melt ponds usually occur in areas where sea ice surface roughness is lower. 展开更多
关键词 ARCTIC UAV melt pond fraction defog algorithm sea ice surface roughness
下载PDF
Melt fractions and medium connectivity in the Himalaya-Tibetan crust
4
作者 Hui Liu Xiaoping Wu 《Earthquake Research Advances》 CSCD 2021年第S01期13-15,共3页
Seismic and magnetotelluric field campaigns carried out across the Himalaya and the Qinghai-Tibetan Plateau show mid-crustal low resistivity and low-velocity zones.Whether these anomalies indicate that there are molte... Seismic and magnetotelluric field campaigns carried out across the Himalaya and the Qinghai-Tibetan Plateau show mid-crustal low resistivity and low-velocity zones.Whether these anomalies indicate that there are molten zones present in the Tibet crust is a focus of geophysical and petrological research.Previous interpretations of MT data to infer melt fractions are often based on presumed electrical conductivity values of partial melt.Temperature,pressure,especially water content in the melt influences the melt conductivity and affects the inferred melt fractions in areas of Tibet.So accurate constraints are essential.In addition,a variety of equations have been proposed to model the conductivity of partially molten rocks in Tibetan crust.However,different rock electrical models relate to different lithological parameters of rocks.So we need to find an appropriate rock electrical model that can apply to Tibet crust.In this study,we use a general electrical conductivity model developed by the global fitting of experimental data in previous study and set up a range of temperature,pressure,and water content for five regions in Tibet.What’s more,using three widely used rock electrical models to figure out corresponding melt fractions in areas of Tibet.We find the most applicable rock electrical model in this region and know better about the distribution and morphology of medium in Tibetan crust. 展开更多
关键词 Partial melt Electrical conductivity model Melt fraction Qinghai-Tibetan
下载PDF
Impact of Fin Arrangement on Heat Transfer and Melting Characteristics of Phase Change Material
5
作者 Arun UNIYAL Yogesh K.PRAJAPATI 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第2期435-456,共22页
Present work investigates the heat transfer and melting behaviour of phase change material(PCM) in six enclosures(enclosure-1 to 6) filled with paraffin wax.Proposed enclosures are equipped with distinct arrangements ... Present work investigates the heat transfer and melting behaviour of phase change material(PCM) in six enclosures(enclosure-1 to 6) filled with paraffin wax.Proposed enclosures are equipped with distinct arrangements of the fins while keeping the fin's surface area equal in each case.Comparative analysis has been presented to recognize the suitable fin arrangements that facilitate improved heat transfer and melting rate of the PCM.Left wall of the enclosure is maintained isothermal for the temperature values 335 K,350 K and 365 K.Dimensionless length of the enclosure including fins is ranging between 0 and 1.Results have been illustrated through the estimation of important performance parameters such as energy absorbing capacity,melting rate,enhancement ratio,and Nusselt number.It has been found that melting time(to melt 100% of the PCM) is 60.5%less in enclosure-2(with two fins of equal length) as compared to the enclosure-1,having no fins.Keeping the fin surface area equal,if the longer fin is placed below the shorter fin(enclosure-3),melting time is further decreased by 14.1% as compared to enclosure-2.However,among all the configurations,enclosure-6 with wire-mesh fin structure exhibits minimum melting time which is 68.4% less as compared to the enclosure-1.Based on the findings,it may be concluded that fins are the main driving agent in the enclosure to transfer the heat from heated wall to the PCM.Proper design and positioning of the fins improve the heat transfer rate followed by melting of the PCM in the entire area of the enclosure.Evolution of the favourable vortices and natural convection current in the enclosure accelerate the melting phenomenon and help to reduce charging time. 展开更多
关键词 phase change material ENCLOSURE FIN melting fraction energy storage heat transfer
原文传递
Temperature of Prograde Metamorphism, Decompressional Partial Melting and Subsequent Melt Fractional Crystallization in the Weihai Migmatitic Gneisses,Sulu UHP Terrane:Constraints from Ti-in-Zircon Thermometer 被引量:5
6
作者 续海金 叶凯 章军锋 《Journal of Earth Science》 SCIE CAS CSCD 2012年第6期813-827,共15页
In order to constrain temperature during subduction and subsequent exhumation of fel- sic continental crust, we carried out a Ti-in-zircon thermometer coupled with zircon internal structure and U-Pb age on migmatitic ... In order to constrain temperature during subduction and subsequent exhumation of fel- sic continental crust, we carried out a Ti-in-zircon thermometer coupled with zircon internal structure and U-Pb age on migmatitic gneisses from the Weihai region in the Sulu ultra-high pres- sure (UHP) metamorphic terrane, eastern China. The Weihai migmatitic gneisses are composed of in- tercalated compositional layers of melanosome and plagioclase (Pl)-rich lencosome and K-feldspar (Kfs)-rich pegmatite veins. Four stages of zircon growth were recognized in the Weihai migmatitic gneisses. They successively recorded informations of protolith, prograde metamorphism, decompres- sional partial melting during early stage exhumation and subsequent fractional crystallization of pri- mary melt during later stage cooling exhumation. The inherited cores in zircon from the melanosome and the Pl-rich leucosome suggest that the pro- tolith of the migmatitic gneiss is Mid- Neoproterozoic (-780 Ma) magmatic rock. Metamorphic zircons with concordant ages ranging from 243 to 256 Ma occur as over- growth mantles on the protolith magmatic zir- con cores. The estimated growth temperatures (625-717 "C) of the metamorphic zircons have a negative correlation with their ages, indicating a progressive metamorphism in HP eciogite-facies condition during subduction. Zircon recrystal- lized rims (228-2 Ma) in the PI-rich ieucosome layers provide the lower limit of the decompress-sional partial melting time during exhumation. The ages from 228^-2 to 219~2 Ma recorded in the Pl-rich leucosome and the Kfs-rich pegmatite vein, respectively, suggest the duration of the fractional crystallization of primary melt during exhumation. The calculated growth temperatures of the zircon rims from the Pl-rich leucosome range from 858 to 739 , and the temperatures of new growth zircon grains (219±2 Ma) in Kfs-rich vein are between 769 and 529 . The estimated temperatures have a positive correlation with ages from the Pl-rich leucosome to the Kfs-rich pegmatite vein, strongly indi- cating that a process of fractional crystallization of the partial melt during exhumation. 展开更多
关键词 Ti-in-zircon thermometer prograde metamorphism decompressional partial melting fractional crystallization migmatitic gneiss Sulu UHP metamorphic terrane.
原文传递
Characterization of sea ice and its snow cover in the Arctic Pacific sector during the summer of 2016 被引量:1
7
作者 Qing Ji Ying Liu +2 位作者 Xiaoping Pang Yue Pan Xi Zhao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第1期33-42,共10页
A comprehensive analysis of sea ice and its snow cover during the summer in the Arctic Pacific sector was conducted using the observations recorded during the 7th Chinese National Arctic Research Expedition(CHIANRE-20... A comprehensive analysis of sea ice and its snow cover during the summer in the Arctic Pacific sector was conducted using the observations recorded during the 7th Chinese National Arctic Research Expedition(CHIANRE-2016)and the satellite-derived parameters of the melt pond fraction(MPF)and snow grain size(SGS)from MODIS data.The results show that there were many low-concentration ice areas in the south of 78°N,while the ice concentration and thickness increased significantly with the latitude above the north of 78°N during CHIANRE-2016.The average MPF presented a trend of increasing in June and then decreasing in early September for 2016.The average snow depth on sea ice increased with latitude in the Arctic Pacific sector.We found a widely developed depth hoar layer in the snow stratigraphic profiles.The average SGS generally increased from June to early August and then decreased from August to September in 2016,and two valley values appeared during this period due to snowfall incidents. 展开更多
关键词 sea ice snow cover melt pond fraction snow grain size Arctic Pacific sector
下载PDF
Numerical Analysis of Phase Change and Container Materials for Thermal Energy Storage in the Storage Tank of Solar Water Heating System 被引量:1
8
作者 SINGH Shailendra ANAND Abhishek +1 位作者 SHUKLA Amritanshu SHARMA Atul 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第2期408-421,共14页
This study evaluates the effectiveness of phase change materials(PCMs) inside a storage tank of warm water for solar water heating(SWH) system through the theoretical simulation based on the experimental model of S.Ca... This study evaluates the effectiveness of phase change materials(PCMs) inside a storage tank of warm water for solar water heating(SWH) system through the theoretical simulation based on the experimental model of S.Canbazoglu et al.The model is explained by five fundamental equations for the calculation of various parameters like the effectiveness of PCMs,the mass of hot water,total heat content,and duration of charging.This study simulated eleven PCMs to analyze their effectiveness like Sodium hydrogen phosphate dodecahydrate(SHPD),OM 37,N-Eicosane(NE),Lauric acid(LA),Paraffin wax(PW),OM 48,Paraffin wax C_(20-33)(PW-C20-33),Sodium acetate trihydrate(SAT),Palmitic acid(PA),Myristic acid(MA),and Stearic acid(SA).Among all PCMs,the SHPD has found the highest value of effectiveness factor of 3.27.So,it is the most recommended PCM for the storage tank of the SWH system.The study also includes the melt fraction analysis of all enumerated PCMs corresponding to container materials of stainless steel,glass,aluminum mixed,tin,aluminum,and copper.This melt fraction analysis is performed by making a coding program in the FORTRAN programming language.Through the analysis,copper container material is found to have high melting rate for all PCMs so it is superior to other container materials. 展开更多
关键词 theoretical model solar water heating system phase change material effectiveness factor melt fraction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部