The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference oper...The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.展开更多
In this paper, a new kind of alternating direction implicit (ADI) Crank-Nicolson-type orthogonal spline collocation (OSC) method is formulated for the two-dimensional frac-tional evolution equation with a weakly s...In this paper, a new kind of alternating direction implicit (ADI) Crank-Nicolson-type orthogonal spline collocation (OSC) method is formulated for the two-dimensional frac-tional evolution equation with a weakly singular kernel arising in the theory of linear viscoelas-ticity. The novel OSC method is used for the spatial discretization, and ADI Crank-Nicolson-type method combined with the second order fractional quadrature rule are considered for thetemporal component. The stability of proposed scheme is rigourously established, and nearlyoptimal order error estimate is also derived. Numerical experiments are conducted to supportthe predicted convergence rates and also exhibit expected super-convergence phenomena.展开更多
A generalized upwind scheme with fractional steps for 3-D mathematical models of convection dominating groundwater quality is suggested. The mass transport equation is split into a convection equation and a dispersive...A generalized upwind scheme with fractional steps for 3-D mathematical models of convection dominating groundwater quality is suggested. The mass transport equation is split into a convection equation and a dispersive equation. The generalized upwind scheme is used to solve the convection equation and the finite element method is used to compute the dispersive equation.These procedures which not only overcome the phenomenon of the negative concentration and numerical dispersion appear frequently with normal FEM or FDM to solve models of convection dominating groundwater transport but also avoid the step for computing each node velocity give a more suitable method to calculate the concentrations of the well points.展开更多
Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order tim...Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper.展开更多
The fractional Feynman-Kac equations describe the distributions of functionals of non-Brownian motion, or anomalous diffusion, including two types called the forward and backward fractional Feynman-Kac equations, wher...The fractional Feynman-Kac equations describe the distributions of functionals of non-Brownian motion, or anomalous diffusion, including two types called the forward and backward fractional Feynman-Kac equations, where the nonlocal time-space coupled fractional substantial derivative is involved. This paper focuses on the more widely used backward version. Based on the newly proposed approximation operators for fractional substantial derivative, we establish compact finite difference schemes for the backward fractional Feynman-Kac equation. The proposed difference schemes have the q-th(q = 1, 2, 3, 4) order accuracy in temporal direction and fourth order accuracy in spatial direction, respectively. The numerical stability and convergence in the maximum norm are proved for the first order time discretization scheme by the discrete energy method, where an inner product in complex space is introduced. Finally, extensive numerical experiments are carried out to verify the availability and superiority of the algorithms. Also, simulations of the backward fractional Feynman-Kac equation with Dirac delta function as the initial condition are performed to further confirm the effectiveness of the proposed methods.展开更多
In this paper, we introduce high-order finite volume methods for the multi-term time fractional sub-diffusion equation. The time fractional derivatives are described in Caputo’s sense. By using some operators, we obt...In this paper, we introduce high-order finite volume methods for the multi-term time fractional sub-diffusion equation. The time fractional derivatives are described in Caputo’s sense. By using some operators, we obtain the compact finite volume scheme have high order accuracy. We use a compact operator to deal with spatial direction;then we can get the compact finite volume scheme. It is proved that the finite volume scheme is unconditionally stable and convergent in L<sub>∞</sub>-norm. The convergence order is O(τ<sup>2-α</sup> + h<sup>4</sup>). Finally, two numerical examples are given to confirm the theoretical results. Some tables listed also can explain the stability and convergence of the scheme.展开更多
In this study, a discrete fractional Henon map is proposed in the Caputo discrete delta’s sense. The results show that the discrete fractional calculus is an efficient tool and the maps derived in this way have simpl...In this study, a discrete fractional Henon map is proposed in the Caputo discrete delta’s sense. The results show that the discrete fractional calculus is an efficient tool and the maps derived in this way have simpler forms but hold rich dynamical behaviors.展开更多
In Dynamic Global Vegetation Models (DGVMs), the establishment of woody vegetation refers to flowering, fertiliza- tion, seed production, germination, and the growth of tree seedlings. It determines not only the pop...In Dynamic Global Vegetation Models (DGVMs), the establishment of woody vegetation refers to flowering, fertiliza- tion, seed production, germination, and the growth of tree seedlings. It determines not only the population densities but also other important ecosystem structural variables. In current DGVMs, establishments of woody plant functional types (PFTs) are assumed to be either the same in the same grid cell, or largely stochastic. We investigated the uncertainties in the competition of establishment among coexisting woody PFTs from three aspects: the dependence of PFT establishments on vegetation states; background establishment; and relative establishment potentials of different PFTs. Sensitivity experi- ments showed that the dependence of establishment rate on the fractional coverage of a PFT favored the dominant PFT by increasing its share in establishment. While a small background establishment rate had little impact on equilibrium states of the ecosystem, it did change the timescale required for the establishment of alien species in pre-existing forest due to their disadvantage in seed competition during the early stage of invasion. Meanwhile, establishment purely fiom background (the scheme commonly used in current DGVMs) led to inconsistent behavior in response to the change in PFT specification (e.g., number of PFTs and their specification). Furthermore, the results also indicated that trade-off between irtdividual growth and reproduction/colonization has significant influences on the competition of establishment. Hence, further development of es- tablishment parameterization in DGVMs is essential in reducing the uncertainties in simulations of both ecosystem structures and successions.展开更多
Environmental changes are expected to shift the distribution and abundance of vegetation by determining seedling estab- lishment and success. However, most current ecosystem models only focus on the impacts of abiotic...Environmental changes are expected to shift the distribution and abundance of vegetation by determining seedling estab- lishment and success. However, most current ecosystem models only focus on the impacts of abiotic factors on biogeophysics (e.g., global distribution, etc.), ignoring their roles in the population dynamics (e.g., seedling establishment rate, mortality rate, etc.) of ecological communities. Such neglect may lead to biases in ecosystem population dynamics (such as changes in population density for woody species in forest ecosystems) and characteristics. In the present study, a new establishment scheme for introducing soil water as a function rather than a threshold was developed and validated, using version 1.0 of the IAP-DGVM as a test bed. The results showed that soil water in the establishment scheme had a remarkable influence on forest transition zones. Compared with the original scheme, the new scheme significantly improved simulations of tree population density, especially in the peripheral areas of forests and transition zones. Consequently, biases in forest fractional coverage were reduced in approximately 78.8% of the global grid cells. The global simulated areas of tree, shrub, grass and bare soil performed better, where the relative biases were reduced from 34.3% to 4.8%, from 27.6% to 13.1%, from 55.2% to 9.2%, and from 37.6% to 3.6%, respectively. Furthermore, the new scheme had more reasonable dependencies of plant functional types (PFTs) on mean annual precipitation, and described the correct dominant PFTs in the tropical rainforest peripheral areas of the Amazon and central Africa.展开更多
In this paper, we construct a class of semi-implicit difference method for time fractional diffusion equations—the group explicit (GE) difference scheme, which is a difference scheme with good parallelism constructed...In this paper, we construct a class of semi-implicit difference method for time fractional diffusion equations—the group explicit (GE) difference scheme, which is a difference scheme with good parallelism constructed using Saul’yev asymmetric scheme. The stability and convergence of the GE scheme of time fractional diffusion equation are analyzed by mathematical induction. Then, the theoretical analysis is verified by numerical experiments, which shows that the GE scheme is effective for solving the time fractional diffusion equation.展开更多
The high-order implicit finite difference schemes for solving the fractional- order Stokes' first problem for a heated generalized second grade fluid with the Dirichlet boundary condition and the initial condition ar...The high-order implicit finite difference schemes for solving the fractional- order Stokes' first problem for a heated generalized second grade fluid with the Dirichlet boundary condition and the initial condition are given. The stability, solvability, and convergence of the numerical scheme are discussed via the Fourier analysis and the matrix analysis methods. An improved implicit scheme is also obtained. Finally, two numerical examples are given to demonstrate the effectiveness of the mentioned schemes展开更多
In this paper, we consider an SIR-model for which the interaction term is the square root of the susceptible and infected individuals in the form of fractional order differential equations. First the non-negative solu...In this paper, we consider an SIR-model for which the interaction term is the square root of the susceptible and infected individuals in the form of fractional order differential equations. First the non-negative solution of the model in fractional order is presented. Then the local stability analysis of the model in fractional order is discussed. Finally, the general solutions are presented and a discrete-time finite difference scheme is constructed using the nonstandard finite difference (NSFD) method. A comparative study of the classical Runge-Kutta method and ODE45 is presented in the case of integer order derivatives. The solutions obtained are presented graphically.展开更多
The space-time fractional advection dispersion equations are linear partial pseudo-differential equations with spatial fractional derivatives in time and in space and are used to model transport at the earth surface. ...The space-time fractional advection dispersion equations are linear partial pseudo-differential equations with spatial fractional derivatives in time and in space and are used to model transport at the earth surface. The time fractional order is denoted by β∈ and ?is devoted to the space fractional order. The time fractional advection dispersion equations describe particle motion with memory in time. Space-fractional advection dispersion equations arise when velocity variations are heavy-tailed and describe particle motion that accounts for variation in the flow field over entire system. In this paper, I focus on finding the precise explicit discrete approximate solutions to these models for some values of ?with ?, ?while the Cauchy case as ?and the classical case as ?with ?are studied separately. I compare the numerical results of these models for different values of ?and ?and for some other related changes. The approximate solutions of these models are also discussed as a random walk with or without a memory depending on the value of . Then I prove that the discrete solution in the Fourierlaplace space of theses models converges in distribution to the Fourier-Laplace transform of the corresponding fractional differential equations for all the fractional values of ?and .展开更多
文摘The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.
基金supported by National Nature Science Foundation of China(11701168,11601144 and 11626096)Hunan Provincial Natural Science Foundation of China(2018JJ3108,2018JJ3109 and 2018JJ4062)+1 种基金Scientific Research Fund of Hunan Provincial Education Department(16K026 and YB2016B033)China Postdoctoral Science Foundation(2018M631403)
文摘In this paper, a new kind of alternating direction implicit (ADI) Crank-Nicolson-type orthogonal spline collocation (OSC) method is formulated for the two-dimensional frac-tional evolution equation with a weakly singular kernel arising in the theory of linear viscoelas-ticity. The novel OSC method is used for the spatial discretization, and ADI Crank-Nicolson-type method combined with the second order fractional quadrature rule are considered for thetemporal component. The stability of proposed scheme is rigourously established, and nearlyoptimal order error estimate is also derived. Numerical experiments are conducted to supportthe predicted convergence rates and also exhibit expected super-convergence phenomena.
文摘A generalized upwind scheme with fractional steps for 3-D mathematical models of convection dominating groundwater quality is suggested. The mass transport equation is split into a convection equation and a dispersive equation. The generalized upwind scheme is used to solve the convection equation and the finite element method is used to compute the dispersive equation.These procedures which not only overcome the phenomenon of the negative concentration and numerical dispersion appear frequently with normal FEM or FDM to solve models of convection dominating groundwater transport but also avoid the step for computing each node velocity give a more suitable method to calculate the concentrations of the well points.
基金Supported by the Discipline Construction and Teaching Research Fund of LUTcte(20140089)
文摘Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper.
基金Project supported by the National Natural Science Foundation of China(Grant No.11471262)Henan University of Technology High-level Talents Fund,China(Grant No.2018BS039)
文摘The fractional Feynman-Kac equations describe the distributions of functionals of non-Brownian motion, or anomalous diffusion, including two types called the forward and backward fractional Feynman-Kac equations, where the nonlocal time-space coupled fractional substantial derivative is involved. This paper focuses on the more widely used backward version. Based on the newly proposed approximation operators for fractional substantial derivative, we establish compact finite difference schemes for the backward fractional Feynman-Kac equation. The proposed difference schemes have the q-th(q = 1, 2, 3, 4) order accuracy in temporal direction and fourth order accuracy in spatial direction, respectively. The numerical stability and convergence in the maximum norm are proved for the first order time discretization scheme by the discrete energy method, where an inner product in complex space is introduced. Finally, extensive numerical experiments are carried out to verify the availability and superiority of the algorithms. Also, simulations of the backward fractional Feynman-Kac equation with Dirac delta function as the initial condition are performed to further confirm the effectiveness of the proposed methods.
文摘In this paper, we introduce high-order finite volume methods for the multi-term time fractional sub-diffusion equation. The time fractional derivatives are described in Caputo’s sense. By using some operators, we obtain the compact finite volume scheme have high order accuracy. We use a compact operator to deal with spatial direction;then we can get the compact finite volume scheme. It is proved that the finite volume scheme is unconditionally stable and convergent in L<sub>∞</sub>-norm. The convergence order is O(τ<sup>2-α</sup> + h<sup>4</sup>). Finally, two numerical examples are given to confirm the theoretical results. Some tables listed also can explain the stability and convergence of the scheme.
文摘In this study, a discrete fractional Henon map is proposed in the Caputo discrete delta’s sense. The results show that the discrete fractional calculus is an efficient tool and the maps derived in this way have simpler forms but hold rich dynamical behaviors.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05110103)the State Key Project for Basic Research Program of China(Grant No.2010CB951801)the National High Technology Research and Development Program of China(863 Program)(Grant No.2009AA122105)
文摘In Dynamic Global Vegetation Models (DGVMs), the establishment of woody vegetation refers to flowering, fertiliza- tion, seed production, germination, and the growth of tree seedlings. It determines not only the population densities but also other important ecosystem structural variables. In current DGVMs, establishments of woody plant functional types (PFTs) are assumed to be either the same in the same grid cell, or largely stochastic. We investigated the uncertainties in the competition of establishment among coexisting woody PFTs from three aspects: the dependence of PFT establishments on vegetation states; background establishment; and relative establishment potentials of different PFTs. Sensitivity experi- ments showed that the dependence of establishment rate on the fractional coverage of a PFT favored the dominant PFT by increasing its share in establishment. While a small background establishment rate had little impact on equilibrium states of the ecosystem, it did change the timescale required for the establishment of alien species in pre-existing forest due to their disadvantage in seed competition during the early stage of invasion. Meanwhile, establishment purely fiom background (the scheme commonly used in current DGVMs) led to inconsistent behavior in response to the change in PFT specification (e.g., number of PFTs and their specification). Furthermore, the results also indicated that trade-off between irtdividual growth and reproduction/colonization has significant influences on the competition of establishment. Hence, further development of es- tablishment parameterization in DGVMs is essential in reducing the uncertainties in simulations of both ecosystem structures and successions.
基金supported by the project of the National Natural Science Foundation of China(Grant No.41305098)the Chinese Academy of Sciences Strategic Priority Research Program(Grant No.XDA05110103)the National Natural Science Foundation of China(Grant No.41305096)
文摘Environmental changes are expected to shift the distribution and abundance of vegetation by determining seedling estab- lishment and success. However, most current ecosystem models only focus on the impacts of abiotic factors on biogeophysics (e.g., global distribution, etc.), ignoring their roles in the population dynamics (e.g., seedling establishment rate, mortality rate, etc.) of ecological communities. Such neglect may lead to biases in ecosystem population dynamics (such as changes in population density for woody species in forest ecosystems) and characteristics. In the present study, a new establishment scheme for introducing soil water as a function rather than a threshold was developed and validated, using version 1.0 of the IAP-DGVM as a test bed. The results showed that soil water in the establishment scheme had a remarkable influence on forest transition zones. Compared with the original scheme, the new scheme significantly improved simulations of tree population density, especially in the peripheral areas of forests and transition zones. Consequently, biases in forest fractional coverage were reduced in approximately 78.8% of the global grid cells. The global simulated areas of tree, shrub, grass and bare soil performed better, where the relative biases were reduced from 34.3% to 4.8%, from 27.6% to 13.1%, from 55.2% to 9.2%, and from 37.6% to 3.6%, respectively. Furthermore, the new scheme had more reasonable dependencies of plant functional types (PFTs) on mean annual precipitation, and described the correct dominant PFTs in the tropical rainforest peripheral areas of the Amazon and central Africa.
文摘In this paper, we construct a class of semi-implicit difference method for time fractional diffusion equations—the group explicit (GE) difference scheme, which is a difference scheme with good parallelism constructed using Saul’yev asymmetric scheme. The stability and convergence of the GE scheme of time fractional diffusion equation are analyzed by mathematical induction. Then, the theoretical analysis is verified by numerical experiments, which shows that the GE scheme is effective for solving the time fractional diffusion equation.
基金supported by the National Natural Science Foundation of China (No. 10971175)the Scientific Research Fund of Hunan Provincial Education Department (No. 09A093)
文摘The high-order implicit finite difference schemes for solving the fractional- order Stokes' first problem for a heated generalized second grade fluid with the Dirichlet boundary condition and the initial condition are given. The stability, solvability, and convergence of the numerical scheme are discussed via the Fourier analysis and the matrix analysis methods. An improved implicit scheme is also obtained. Finally, two numerical examples are given to demonstrate the effectiveness of the mentioned schemes
文摘In this paper, we consider an SIR-model for which the interaction term is the square root of the susceptible and infected individuals in the form of fractional order differential equations. First the non-negative solution of the model in fractional order is presented. Then the local stability analysis of the model in fractional order is discussed. Finally, the general solutions are presented and a discrete-time finite difference scheme is constructed using the nonstandard finite difference (NSFD) method. A comparative study of the classical Runge-Kutta method and ODE45 is presented in the case of integer order derivatives. The solutions obtained are presented graphically.
文摘The space-time fractional advection dispersion equations are linear partial pseudo-differential equations with spatial fractional derivatives in time and in space and are used to model transport at the earth surface. The time fractional order is denoted by β∈ and ?is devoted to the space fractional order. The time fractional advection dispersion equations describe particle motion with memory in time. Space-fractional advection dispersion equations arise when velocity variations are heavy-tailed and describe particle motion that accounts for variation in the flow field over entire system. In this paper, I focus on finding the precise explicit discrete approximate solutions to these models for some values of ?with ?, ?while the Cauchy case as ?and the classical case as ?with ?are studied separately. I compare the numerical results of these models for different values of ?and ?and for some other related changes. The approximate solutions of these models are also discussed as a random walk with or without a memory depending on the value of . Then I prove that the discrete solution in the Fourierlaplace space of theses models converges in distribution to the Fourier-Laplace transform of the corresponding fractional differential equations for all the fractional values of ?and .