Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditi...Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.展开更多
Characteristic finite difference fractional step schemes are put forward. The electric potential equation is described by a seven-point finite difference scheme, and the electron and hole concentration equations are t...Characteristic finite difference fractional step schemes are put forward. The electric potential equation is described by a seven-point finite difference scheme, and the electron and hole concentration equations are treated by a kind of characteristic finite difference fractional step methods. The temperature equation is described by a fractional step method. Thick and thin grids are made use of to form a complete set. Piecewise threefold quadratic interpolation, symmetrical extension, calculus of variations, commutativity of operator product, decomposition of high order difference operators and prior estimates are also made use of. Optimal order estimates in l2 norm are derived to determine the error of the approximate solution. The well-known problem is thorongley and completely solred.展开更多
A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media....A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media. Some techniques, such as the calculus of variations, energy analysis method, commutativity of the products of difference operators, decomposition of high-order difference operators and the theory of a priori estimates are introduced and an optimal order error estimates in l^2 norm is derived. This method has been applied successfully to the numerical simulation of enhanced oil production in actual oilfields, and the simulation results ate quite interesting and satisfactory.展开更多
An integrated fluid-thermal-structural analysis approach is presented. In this approach, the heat conduction in a solid is coupled with the heat convection in the viscous flow of the fluid resulting in the thermal str...An integrated fluid-thermal-structural analysis approach is presented. In this approach, the heat conduction in a solid is coupled with the heat convection in the viscous flow of the fluid resulting in the thermal stress in the solid. The fractional four-step finite element method and the streamline upwind Petrov-Galerkin (SUPG) method are used to analyze the viscous thermal flow in the fluid. Analyses of the heat transfer and the thermal stress in the solid axe performed by the Galerkin method. The second-order semi- implicit Crank-Nicolson scheme is used for the time integration. The resulting nonlinear equations are lineaxized to improve the computational efficiency. The integrated analysis method uses a three-node triangular element with equal-order interpolation functions for the fluid velocity components, the pressure, the temperature, and the solid displacements to simplify the overall finite element formulation. The main advantage of the present method is to consistently couple the heat transfer along the fluid-solid interface. Results of several tested problems show effectiveness of the present finite element method, which provides insight into the integrated fluid-thermal-structural interaction phenomena.展开更多
For the section coupled system of multilayer dynamics of fluids in porous media, a parallel scheme modified by the characteristic finite difference fractional steps is proposed for a complete point set consisting of c...For the section coupled system of multilayer dynamics of fluids in porous media, a parallel scheme modified by the characteristic finite difference fractional steps is proposed for a complete point set consisting of coarse and fine partitions. Some tech- niques, such as calculus of variations, energy method, twofold-quadratic interpolation of product type, multiplicative commutation law of difference operators, decomposition of high order difference operators, and prior estimates, are used in theoretical analysis. Optimal order estimates in 12 norm are derived to show accuracy of the second order approximation solutions. These methods have been used to simulate the problems of migration-accumulation of oil resources.展开更多
A generalized upwind scheme with fractional steps for 3-D mathematical models of convection dominating groundwater quality is suggested. The mass transport equation is split into a convection equation and a dispersive...A generalized upwind scheme with fractional steps for 3-D mathematical models of convection dominating groundwater quality is suggested. The mass transport equation is split into a convection equation and a dispersive equation. The generalized upwind scheme is used to solve the convection equation and the finite element method is used to compute the dispersive equation.These procedures which not only overcome the phenomenon of the negative concentration and numerical dispersion appear frequently with normal FEM or FDM to solve models of convection dominating groundwater transport but also avoid the step for computing each node velocity give a more suitable method to calculate the concentrations of the well points.展开更多
The two-dimensional nonlinear shallow water equations in the presence of Coriolis force and bottom topography are solved numerically using the fractional steps method. The fractional steps method consists of splitting...The two-dimensional nonlinear shallow water equations in the presence of Coriolis force and bottom topography are solved numerically using the fractional steps method. The fractional steps method consists of splitting the multi-dimensional matrix inversion problem into an equivalent one dimensional problem which is successively integrated in every direction along the characteristics using the Riemann invariant associated with the cubic spline interpolation. The height and the velocity field of the shallow water equations over irregular bottom are discretized on a fixed Eulerian grid and time-stepped using the fractional steps method. Effects of the Coriolis force and the bottom topography for particular initial flows on the velocity components and the free surface elevation have been studied and the results are plotted.展开更多
Numerical simulation and theoretical analysis of seawater intrusion is the mathematical basis for modern environmental science. Its mathematical model is the nonlinear coupled system of partial differential equations ...Numerical simulation and theoretical analysis of seawater intrusion is the mathematical basis for modern environmental science. Its mathematical model is the nonlinear coupled system of partial differential equations with initial-boundary problems. For a generic case of a three-dimensional bounded region, two kinds of finite difference fractional steps pro- cedures are put forward. Optimal order estimates in norm are derived for the error in the approximation solution. The present method has been successfully used in predicting the consequences of seawater intrusion and protection projects.展开更多
In approximation of fractional order systems,a significant objective is to preserve the important properties of the original system.The monotonicity of time/frequency responses is one of these properties whose preserv...In approximation of fractional order systems,a significant objective is to preserve the important properties of the original system.The monotonicity of time/frequency responses is one of these properties whose preservation is of great importance in approximation process.Considering this importance,the issues of monotonicity preservation of the step response and monotonicity preservation of the magnitude-frequency response are independently investigated in this paper.In these investigations,some conditions on approximating filters of fractional operators are found to guarantee the preservation of step/magnitude-frequency response monotonicity in approximation process.These conditions are also simplified in some special cases.In addition,numerical simulation results are presented to show the usefulness of the obtained conditions.展开更多
基金supported by National Natural Science Foundation of China(11101244,11271231)National Tackling Key Problems Program(20050200069)Doctorate Foundation of the Ministry of Education of China(20030422047)
文摘Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.
基金This work is supported by the Major State Basic Research Program of China (19990328), the National Tackling Key Problem Program, the National Science Foundation of China (10271066 and 0372052), and the Doctorate Foundation of the Ministry of Education of China (20030422047).
文摘Characteristic finite difference fractional step schemes are put forward. The electric potential equation is described by a seven-point finite difference scheme, and the electron and hole concentration equations are treated by a kind of characteristic finite difference fractional step methods. The temperature equation is described by a fractional step method. Thick and thin grids are made use of to form a complete set. Piecewise threefold quadratic interpolation, symmetrical extension, calculus of variations, commutativity of operator product, decomposition of high order difference operators and prior estimates are also made use of. Optimal order estimates in l2 norm are derived to determine the error of the approximate solution. The well-known problem is thorongley and completely solred.
基金supported by the Major State Basic Research Development Program of China(G19990328)National Tackling Key Program(2011ZX05011-004+6 种基金2011ZX0505220050200069)National Natural Science Foundation of China(11101244112712311077112410372052)Doctorate Foundation of the Ministry of Education of China(20030422047)
文摘A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media. Some techniques, such as the calculus of variations, energy analysis method, commutativity of the products of difference operators, decomposition of high-order difference operators and the theory of a priori estimates are introduced and an optimal order error estimates in l^2 norm is derived. This method has been applied successfully to the numerical simulation of enhanced oil production in actual oilfields, and the simulation results ate quite interesting and satisfactory.
基金the National Metal and Materials Technology Centerthe Thailand Research Fund+1 种基金the Office of Higher Education Commissionthe Chulalongkorn University for supporting the present research
文摘An integrated fluid-thermal-structural analysis approach is presented. In this approach, the heat conduction in a solid is coupled with the heat convection in the viscous flow of the fluid resulting in the thermal stress in the solid. The fractional four-step finite element method and the streamline upwind Petrov-Galerkin (SUPG) method are used to analyze the viscous thermal flow in the fluid. Analyses of the heat transfer and the thermal stress in the solid axe performed by the Galerkin method. The second-order semi- implicit Crank-Nicolson scheme is used for the time integration. The resulting nonlinear equations are lineaxized to improve the computational efficiency. The integrated analysis method uses a three-node triangular element with equal-order interpolation functions for the fluid velocity components, the pressure, the temperature, and the solid displacements to simplify the overall finite element formulation. The main advantage of the present method is to consistently couple the heat transfer along the fluid-solid interface. Results of several tested problems show effectiveness of the present finite element method, which provides insight into the integrated fluid-thermal-structural interaction phenomena.
基金supported by the Major State Basic Research Program of China(No.19990328)the National Tackling Key Program(No.20050200069)+1 种基金the National Natural Science Foundation of China(Nos.10372052,10771124,11101244,and 11271231)the Doctorate Foundation of the State Education Commission(No.20030422047)
文摘For the section coupled system of multilayer dynamics of fluids in porous media, a parallel scheme modified by the characteristic finite difference fractional steps is proposed for a complete point set consisting of coarse and fine partitions. Some tech- niques, such as calculus of variations, energy method, twofold-quadratic interpolation of product type, multiplicative commutation law of difference operators, decomposition of high order difference operators, and prior estimates, are used in theoretical analysis. Optimal order estimates in 12 norm are derived to show accuracy of the second order approximation solutions. These methods have been used to simulate the problems of migration-accumulation of oil resources.
文摘A generalized upwind scheme with fractional steps for 3-D mathematical models of convection dominating groundwater quality is suggested. The mass transport equation is split into a convection equation and a dispersive equation. The generalized upwind scheme is used to solve the convection equation and the finite element method is used to compute the dispersive equation.These procedures which not only overcome the phenomenon of the negative concentration and numerical dispersion appear frequently with normal FEM or FDM to solve models of convection dominating groundwater transport but also avoid the step for computing each node velocity give a more suitable method to calculate the concentrations of the well points.
文摘The two-dimensional nonlinear shallow water equations in the presence of Coriolis force and bottom topography are solved numerically using the fractional steps method. The fractional steps method consists of splitting the multi-dimensional matrix inversion problem into an equivalent one dimensional problem which is successively integrated in every direction along the characteristics using the Riemann invariant associated with the cubic spline interpolation. The height and the velocity field of the shallow water equations over irregular bottom are discretized on a fixed Eulerian grid and time-stepped using the fractional steps method. Effects of the Coriolis force and the bottom topography for particular initial flows on the velocity components and the free surface elevation have been studied and the results are plotted.
文摘Numerical simulation and theoretical analysis of seawater intrusion is the mathematical basis for modern environmental science. Its mathematical model is the nonlinear coupled system of partial differential equations with initial-boundary problems. For a generic case of a three-dimensional bounded region, two kinds of finite difference fractional steps pro- cedures are put forward. Optimal order estimates in norm are derived for the error in the approximation solution. The present method has been successfully used in predicting the consequences of seawater intrusion and protection projects.
基金supported by the Research Council of Sharif University of Technology(G930720)
文摘In approximation of fractional order systems,a significant objective is to preserve the important properties of the original system.The monotonicity of time/frequency responses is one of these properties whose preservation is of great importance in approximation process.Considering this importance,the issues of monotonicity preservation of the step response and monotonicity preservation of the magnitude-frequency response are independently investigated in this paper.In these investigations,some conditions on approximating filters of fractional operators are found to guarantee the preservation of step/magnitude-frequency response monotonicity in approximation process.These conditions are also simplified in some special cases.In addition,numerical simulation results are presented to show the usefulness of the obtained conditions.