Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditi...Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.展开更多
Characteristic finite difference fractional step schemes are put forward. The electric potential equation is described by a seven-point finite difference scheme, and the electron and hole concentration equations are t...Characteristic finite difference fractional step schemes are put forward. The electric potential equation is described by a seven-point finite difference scheme, and the electron and hole concentration equations are treated by a kind of characteristic finite difference fractional step methods. The temperature equation is described by a fractional step method. Thick and thin grids are made use of to form a complete set. Piecewise threefold quadratic interpolation, symmetrical extension, calculus of variations, commutativity of operator product, decomposition of high order difference operators and prior estimates are also made use of. Optimal order estimates in l2 norm are derived to determine the error of the approximate solution. The well-known problem is thorongley and completely solred.展开更多
A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media....A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media. Some techniques, such as the calculus of variations, energy analysis method, commutativity of the products of difference operators, decomposition of high-order difference operators and the theory of a priori estimates are introduced and an optimal order error estimates in l^2 norm is derived. This method has been applied successfully to the numerical simulation of enhanced oil production in actual oilfields, and the simulation results ate quite interesting and satisfactory.展开更多
For the section coupled system of multilayer dynamics of fluids in porous media, a parallel scheme modified by the characteristic finite difference fractional steps is proposed for a complete point set consisting of c...For the section coupled system of multilayer dynamics of fluids in porous media, a parallel scheme modified by the characteristic finite difference fractional steps is proposed for a complete point set consisting of coarse and fine partitions. Some tech- niques, such as calculus of variations, energy method, twofold-quadratic interpolation of product type, multiplicative commutation law of difference operators, decomposition of high order difference operators, and prior estimates, are used in theoretical analysis. Optimal order estimates in 12 norm are derived to show accuracy of the second order approximation solutions. These methods have been used to simulate the problems of migration-accumulation of oil resources.展开更多
A generalized upwind scheme with fractional steps for 3-D mathematical models of convection dominating groundwater quality is suggested. The mass transport equation is split into a convection equation and a dispersive...A generalized upwind scheme with fractional steps for 3-D mathematical models of convection dominating groundwater quality is suggested. The mass transport equation is split into a convection equation and a dispersive equation. The generalized upwind scheme is used to solve the convection equation and the finite element method is used to compute the dispersive equation.These procedures which not only overcome the phenomenon of the negative concentration and numerical dispersion appear frequently with normal FEM or FDM to solve models of convection dominating groundwater transport but also avoid the step for computing each node velocity give a more suitable method to calculate the concentrations of the well points.展开更多
A two-step Taylor-Galerkin fractional-step finite element method, which is of second order accuracy in space and time, was proposed for the three-dimensional free surface problem. With this method, the intermediate ve...A two-step Taylor-Galerkin fractional-step finite element method, which is of second order accuracy in space and time, was proposed for the three-dimensional free surface problem. With this method, the intermediate velocity was explicitly obtained by neglecting pressure gradient term, and then the velocity was corrected by adding the effects of pressure once the pressure field had been obtained from the pressure Poisson equation. The level set approach was applied to track implicitly the free surface. In order to track the free surface, the transport equation of the level set function was solved at each time step and the level set function is reinitialized through iteration to maintain it as a distance function. The governing equations of the system were discretized by the two- step Taylor-Galerkin method, which is of high-order accuracy and easy to be used. The validity and reliability of this method in this article were proved by two numerical examples.展开更多
The mathematical system is formulated by four partial differential equations combined with initial- boundary value conditions to describe transient behavior of three-dimensional semiconductor device with heat conducti...The mathematical system is formulated by four partial differential equations combined with initial- boundary value conditions to describe transient behavior of three-dimensional semiconductor device with heat conduction. The first equation of an elliptic type is defined with respect to the electric potential, the successive two equations of convection dominated diffusion type are given to define the electron concentration and the hole concentration, and the fourth equation of heat conductor is for the temperature. The electric potential appears in the equations of electron concentration, hole concentration and the temperature in the formation of the intensity. A mass conservative numerical approximation of the electric potential is presented by using the mixed finite volume element, and the accuracy of computation of the electric intensity is improved one order. The method of characteristic fractional step difference is applied to discretize the other three equations, where the hyperbolic terms are approximated by a difference quotient in the characteristics and the diffusion terms are discretized by the method of fractional step difference. The computation of three-dimensional problem works efficiently by dividing it into three one-dimensional subproblems and every subproblem is solved by the method of speedup in parallel. Using a pair of different grids (coarse partition and refined partition), piecewise threefold quadratic interpolation, variation theory, multiplicative commutation rule of differential operators, mathematical induction and priori estimates theory and special technique of differential equations, we derive an optimal second order estimate in L2-norm. This numerical method is valuable in the simulation of semiconductor device theoretically and actually, and gives a powerful tool to solve the international problem presented by J. Douglas, Jr.展开更多
During range-based self-localization of Wireless Sensor Network (WSN) nodes, the number and placement methods of beacon nodes have a great influence on the accuracy of localization. This paper proves a theorem which d...During range-based self-localization of Wireless Sensor Network (WSN) nodes, the number and placement methods of beacon nodes have a great influence on the accuracy of localization. This paper proves a theorem which describes the relationship between the placement of beacon nodes and whether the node can be located in 3D indoor environment. In fact, as the highest locating accuracy can be acquired when the beacon nodes form one or more equilateral triangles in 2D plane, we generalizes this conclusion to 3D space, and proposes a beacon nodes selection algorithm based on the minimum condition number to get the higher locating accuracy, which can minimize the influence of distance measurement error. Simulation results show that the algorithm is effective and feasible.展开更多
For the three-dimensional convection-dominated problem of dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Fract...For the three-dimensional convection-dominated problem of dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Fractional steps techniques are needed to convert a multi-dimensional problem into a series of successive one-dimensional problems. Some techniques, such as calculus of variations, energy method, multiplicative commutation rule of difference operators, decomposition of high order difference operators, and the theory of prior estimates are adopted. Optimal order estimates are derived to determine the error in the second order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources and predicting the consequences of seawater intrusion and protection projects.展开更多
For the system of multilayer dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Some techniques, such as calculus ...For the system of multilayer dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Some techniques, such as calculus of variations, energy method, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates are derived to determine the error in the second order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources.展开更多
For the three-dimensional nonlinear two-phase displacement problem, the modified upwind finite difference fractional steps schenles were put forward. Some techniques, such as calculus of variations, induction hypothes...For the three-dimensional nonlinear two-phase displacement problem, the modified upwind finite difference fractional steps schenles were put forward. Some techniques, such as calculus of variations, induction hypothesis, decomposition of high order difference operators, the theory of prior estimates and techniques were used. Optimal order estimates were derived for the error in the approximation solution. These methods have been successfully used to predict the consequences of seawater intrusion and protection projects.展开更多
We propose a modified upwind finite difference fractional step scheme for the computational fluid mechanics simulations of a three-dimensional photoelectric semiconductor detector. We obtain the optimal l^2-norm error...We propose a modified upwind finite difference fractional step scheme for the computational fluid mechanics simulations of a three-dimensional photoelectric semiconductor detector. We obtain the optimal l^2-norm error estimates by using the techniques including the calculus of variations, the energy methods, the induction hypothesis, and a priori estimates. The proposed scheme is successfully applied to the simulation of the photoelectric semiconductor detectors.展开更多
For nonlinear coupled system of multilayer dynamics of fluids in porous media, the second order and first order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward, trod...For nonlinear coupled system of multilayer dynamics of fluids in porous media, the second order and first order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward, trod two-dimensional and three-dimensional schemes are used to form a complete set. Some techniques, such as calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates, are adopted. Optimal order estimates in L2 norm are derived to determine the error in the second order approximate solution. This method has already been applied to the numerical simulation of migration-accumulation of oil resources.展开更多
For compressible two-phase displacement problem,the modified upwind finite difference fractionalsteps schemes are put forward.Some techniques,such as calculus of variations,commutative law of multiplicationof differen...For compressible two-phase displacement problem,the modified upwind finite difference fractionalsteps schemes are put forward.Some techniques,such as calculus of variations,commutative law of multiplicationof difference operators,decomposition of high order difference operators,the theory of prior estimates and tech-niques are used.Optimal order estimates in L^2 norm are derived for the error in the approximate solution.Thismethod has already been applied to the numerical simulation of seawater intrusion and migration-accumulationof oil resources.展开更多
One of the key problems in the use of underground gas storage is frequent leakage. It can lead to the actual gas storage amount being less than that accounted for. Combining numerical simulation and parameter auto fit...One of the key problems in the use of underground gas storage is frequent leakage. It can lead to the actual gas storage amount being less than that accounted for. Combining numerical simulation and parameter auto fit, this paper ascertains the dynamic variation of the pressure in the storage reservoir, adjusts the actual injecting and producing gas to fit the accounted pressure with the tested pressure, obtains the gas leakage of the storage, and then determines the difference between accounted amount and leakage amount. The result is the actual reserves of the storage. The simulation result shows that the method presented can provide a theoretic foundation for estimating the leakage amount, thereby ensuring the actual reserves, searching the leakage route, and reducing leakage by adjusting the storage method.展开更多
The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The p...The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The pressure equation is a nonlinear parabolic equation, the concentration is defined by a convection-diffusion equation and the saturations of different components are stated by nonlinear convection-diffusion equations. The transport pressure appears in the concentration equation and saturation equations in the form of Darcy velocity, and controls their processes. The flow equation is solved by the conservative mixed volume element and the accuracy is improved one order for approximating Darcy velocity. The method of characteristic mixed volume element is applied to solve the concentration, where the diffusion is discretized by a mixed volume element method and the convection is treated by the method of characteristics. The characteristics can confirm strong computational stability at sharp fronts and it can avoid numerical dispersion and nonphysical oscillation. The scheme can adopt a large step while its numerical results have small time-truncation error and high order of accuracy. The mixed volume element method has the law of conservation on every element for the diffusion and it can obtain numerical solutions of the concentration and adjoint vectors. It is most important in numerical simulation to ensure the physical conservative nature. The saturation different components are obtained by the method of characteristic fractional step difference. The computational work is shortened greatly by decomposing a three-dimensional problem into three successive one-dimensional problems and it is completed easily by using the algorithm of speedup. Using the theory and technique of a priori estimates of differential equations, we derive an optimal second order estimates in 12 norm. Numerical examples are given to show the effectiveness and practicability and the method is testified as a powerful tool to solve the important problems.展开更多
A kind of second-order implicit upwind fractional step finite difference methods are presented for the numerical simulation of coupled systems for enhanced (chemical) oil production with capillary force in the porou...A kind of second-order implicit upwind fractional step finite difference methods are presented for the numerical simulation of coupled systems for enhanced (chemical) oil production with capillary force in the porous media. Some techniques, e.g., the calculus of variations, the energy analysis method, the commutativity of the products of difference operators, the decomposition of high-order difference operators, and the theory of a priori estimate, are introduced. An optimal order error estimate in the l2 norm is derived. The method is successfully used in the numerical simulation of the enhanced oil production in actual oilfields. The simulation results are satisfactory and interesting.展开更多
Recently, a Corbino-geometry type of Josephson junction constructed on the surface of topological insulators has been proposed for hosting and braiding Majorana zero modes. As a first step to test this proposal, we su...Recently, a Corbino-geometry type of Josephson junction constructed on the surface of topological insulators has been proposed for hosting and braiding Majorana zero modes. As a first step to test this proposal, we successfully fabricated Corbino-geometry Josephson junctions(JJs) on the surface of Bi_(2)Te_(3) flakes. Ac Josephson effect with fractional Shapiro steps was observed in the Corbino-geometry JJs while the flux in the junction area was quantized. By analyzing the experimental data using the resistively shunted Josephson junction model, we found that the Corbino-geometry JJs exhibit a skewed current-phase relation due to its high transparency. The results suggest that Corbino-geometry JJs constructed on the surface of topological insulators may provide a promising platform for studying Majorana-related physics.展开更多
This paper deals with the inertial manifold and the approximate inertialmanifold concepts of the Navier-Stokes equations with nonhomogeneous boundary conditions and inertial algorithm. Furtheremore,we provide the erro...This paper deals with the inertial manifold and the approximate inertialmanifold concepts of the Navier-Stokes equations with nonhomogeneous boundary conditions and inertial algorithm. Furtheremore,we provide the error estimates of the approximate solutions of the Navier-Stokes Equations.展开更多
Fast flow simulation is imperative in the design of pulsating ventilation,which is potentially efficient in indoor air contaminant removal.The execution of the conventional CFD method requires considerable amount of c...Fast flow simulation is imperative in the design of pulsating ventilation,which is potentially efficient in indoor air contaminant removal.The execution of the conventional CFD method requires considerable amount of computational resources.In this study,five different numerical schemes were proposed based on fast fluid dynamics(FFD)and fractional step(FS)methods,and were evaluated to achieve quick simulation of airflow/contaminant dispersion.One of these numerical schemes was identified with the best overall computing efficiency for investigating the performance of pulsating ventilation.With this numerical scheme at hand,the air contaminant removal effectiveness of different ventilation types was evaluated.Two kinds of pulsating ventilation and one kind of steady ventilation were tested upon a benchmark isothermal mixing chamber.The effect of adjusting supply velocity parameters on the ventilation performance was also investigated.CO_(2)concentration,airflow pattern,and vortex structure of different ventilation types were illustrated and analyzed.The results reveal that the FS method is more suitable for transient simulation of wall-bounded indoor airflow than the FFD method,and 34%–51%of computing time could be saved compared to the conventional CFD method.Regarding the choice of ventilation type,steady ventilation might result in short-circuit airflow and stagnant zones;alternatively,pulsating ventilation has greater potential in air contaminant removal due to its ever-changing vortex structure.展开更多
基金supported by National Natural Science Foundation of China(11101244,11271231)National Tackling Key Problems Program(20050200069)Doctorate Foundation of the Ministry of Education of China(20030422047)
文摘Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.
基金This work is supported by the Major State Basic Research Program of China (19990328), the National Tackling Key Problem Program, the National Science Foundation of China (10271066 and 0372052), and the Doctorate Foundation of the Ministry of Education of China (20030422047).
文摘Characteristic finite difference fractional step schemes are put forward. The electric potential equation is described by a seven-point finite difference scheme, and the electron and hole concentration equations are treated by a kind of characteristic finite difference fractional step methods. The temperature equation is described by a fractional step method. Thick and thin grids are made use of to form a complete set. Piecewise threefold quadratic interpolation, symmetrical extension, calculus of variations, commutativity of operator product, decomposition of high order difference operators and prior estimates are also made use of. Optimal order estimates in l2 norm are derived to determine the error of the approximate solution. The well-known problem is thorongley and completely solred.
基金supported by the Major State Basic Research Development Program of China(G19990328)National Tackling Key Program(2011ZX05011-004+6 种基金2011ZX0505220050200069)National Natural Science Foundation of China(11101244112712311077112410372052)Doctorate Foundation of the Ministry of Education of China(20030422047)
文摘A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media. Some techniques, such as the calculus of variations, energy analysis method, commutativity of the products of difference operators, decomposition of high-order difference operators and the theory of a priori estimates are introduced and an optimal order error estimates in l^2 norm is derived. This method has been applied successfully to the numerical simulation of enhanced oil production in actual oilfields, and the simulation results ate quite interesting and satisfactory.
基金supported by the Major State Basic Research Program of China(No.19990328)the National Tackling Key Program(No.20050200069)+1 种基金the National Natural Science Foundation of China(Nos.10372052,10771124,11101244,and 11271231)the Doctorate Foundation of the State Education Commission(No.20030422047)
文摘For the section coupled system of multilayer dynamics of fluids in porous media, a parallel scheme modified by the characteristic finite difference fractional steps is proposed for a complete point set consisting of coarse and fine partitions. Some tech- niques, such as calculus of variations, energy method, twofold-quadratic interpolation of product type, multiplicative commutation law of difference operators, decomposition of high order difference operators, and prior estimates, are used in theoretical analysis. Optimal order estimates in 12 norm are derived to show accuracy of the second order approximation solutions. These methods have been used to simulate the problems of migration-accumulation of oil resources.
文摘A generalized upwind scheme with fractional steps for 3-D mathematical models of convection dominating groundwater quality is suggested. The mass transport equation is split into a convection equation and a dispersive equation. The generalized upwind scheme is used to solve the convection equation and the finite element method is used to compute the dispersive equation.These procedures which not only overcome the phenomenon of the negative concentration and numerical dispersion appear frequently with normal FEM or FDM to solve models of convection dominating groundwater transport but also avoid the step for computing each node velocity give a more suitable method to calculate the concentrations of the well points.
文摘A two-step Taylor-Galerkin fractional-step finite element method, which is of second order accuracy in space and time, was proposed for the three-dimensional free surface problem. With this method, the intermediate velocity was explicitly obtained by neglecting pressure gradient term, and then the velocity was corrected by adding the effects of pressure once the pressure field had been obtained from the pressure Poisson equation. The level set approach was applied to track implicitly the free surface. In order to track the free surface, the transport equation of the level set function was solved at each time step and the level set function is reinitialized through iteration to maintain it as a distance function. The governing equations of the system were discretized by the two- step Taylor-Galerkin method, which is of high-order accuracy and easy to be used. The validity and reliability of this method in this article were proved by two numerical examples.
基金supported by the National Natural Science Foundation of China(Grant Nos.11101124 and 11271231)the National Tackling Key Problems Program for Science and Technology(Grant No.20050200069)the Doctorate Foundation of the Ministry of Education of China(Grant No.20030422047)
文摘The mathematical system is formulated by four partial differential equations combined with initial- boundary value conditions to describe transient behavior of three-dimensional semiconductor device with heat conduction. The first equation of an elliptic type is defined with respect to the electric potential, the successive two equations of convection dominated diffusion type are given to define the electron concentration and the hole concentration, and the fourth equation of heat conductor is for the temperature. The electric potential appears in the equations of electron concentration, hole concentration and the temperature in the formation of the intensity. A mass conservative numerical approximation of the electric potential is presented by using the mixed finite volume element, and the accuracy of computation of the electric intensity is improved one order. The method of characteristic fractional step difference is applied to discretize the other three equations, where the hyperbolic terms are approximated by a difference quotient in the characteristics and the diffusion terms are discretized by the method of fractional step difference. The computation of three-dimensional problem works efficiently by dividing it into three one-dimensional subproblems and every subproblem is solved by the method of speedup in parallel. Using a pair of different grids (coarse partition and refined partition), piecewise threefold quadratic interpolation, variation theory, multiplicative commutation rule of differential operators, mathematical induction and priori estimates theory and special technique of differential equations, we derive an optimal second order estimate in L2-norm. This numerical method is valuable in the simulation of semiconductor device theoretically and actually, and gives a powerful tool to solve the international problem presented by J. Douglas, Jr.
基金Supported by the National Natural Science Foundation of China (No.61003236 61171053)+2 种基金the Doctoral Fund of Ministry of Education of China (No.20113223110002)the Natural Science Major Program for Colleges and Universities in Jiangsu Province (No.11KJA520001)Science & Technology Innovation Fund for higher education institutions of Jiangsu Province (CXZZ12_0481)
文摘During range-based self-localization of Wireless Sensor Network (WSN) nodes, the number and placement methods of beacon nodes have a great influence on the accuracy of localization. This paper proves a theorem which describes the relationship between the placement of beacon nodes and whether the node can be located in 3D indoor environment. In fact, as the highest locating accuracy can be acquired when the beacon nodes form one or more equilateral triangles in 2D plane, we generalizes this conclusion to 3D space, and proposes a beacon nodes selection algorithm based on the minimum condition number to get the higher locating accuracy, which can minimize the influence of distance measurement error. Simulation results show that the algorithm is effective and feasible.
基金Project supported by the Major State Basic Research Program of China (No.G1999032803)the National Tackling Key Problems Program (No.20050200069)the National Natural Science Foundation of China (Nos.10372052, 10271066)the Doctoral Foundation of Ministry of Education of China (No.20030422047).
文摘For the three-dimensional convection-dominated problem of dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Fractional steps techniques are needed to convert a multi-dimensional problem into a series of successive one-dimensional problems. Some techniques, such as calculus of variations, energy method, multiplicative commutation rule of difference operators, decomposition of high order difference operators, and the theory of prior estimates are adopted. Optimal order estimates are derived to determine the error in the second order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources and predicting the consequences of seawater intrusion and protection projects.
基金Project supported by the Major State Basic Research Program of China (No.G1999032803)the National Tackling Key Problems Program (No.20050200069)the National Natural Science Foundation of China (Nos.10372052,10271066)the Doctoral Foundation of Ministry of Education of China(No.20030422047)
文摘For the system of multilayer dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Some techniques, such as calculus of variations, energy method, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates are derived to determine the error in the second order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources.
基金the Major State Basic Research Program of China(No.G1999032803)the National Tackling Key Problems Program(No.20050200069)+1 种基金the National Natural Sciences Foundation of China(Nos.10771124,10372052)the Ph.D.Program Foundation of Ministry of Education of China(No.20030422047)
文摘For the three-dimensional nonlinear two-phase displacement problem, the modified upwind finite difference fractional steps schenles were put forward. Some techniques, such as calculus of variations, induction hypothesis, decomposition of high order difference operators, the theory of prior estimates and techniques were used. Optimal order estimates were derived for the error in the approximation solution. These methods have been successfully used to predict the consequences of seawater intrusion and protection projects.
基金supported by the Major State Basic Research Development Program of China(No. G19990328)the National Key Technologies R&D Program of China (No. 20050200069)+1 种基金the National Natural Science Foundation of China (Nos. 10771124 and 10372052)the Ph. D. Programs Foundation of Ministry of Eduction of China (No. 20030422647)
文摘We propose a modified upwind finite difference fractional step scheme for the computational fluid mechanics simulations of a three-dimensional photoelectric semiconductor detector. We obtain the optimal l^2-norm error estimates by using the techniques including the calculus of variations, the energy methods, the induction hypothesis, and a priori estimates. The proposed scheme is successfully applied to the simulation of the photoelectric semiconductor detectors.
文摘For nonlinear coupled system of multilayer dynamics of fluids in porous media, the second order and first order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward, trod two-dimensional and three-dimensional schemes are used to form a complete set. Some techniques, such as calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates, are adopted. Optimal order estimates in L2 norm are derived to determine the error in the second order approximate solution. This method has already been applied to the numerical simulation of migration-accumulation of oil resources.
基金Supported by the Major State Basic Research Program of China (Grant No.1999032803)the National Natural Science Foundation of China (Grant No.10372052,10271066)the Decorate Foundation of the Ministry Education of China (Grant No.20030422047)
文摘For compressible two-phase displacement problem,the modified upwind finite difference fractionalsteps schemes are put forward.Some techniques,such as calculus of variations,commutative law of multiplicationof difference operators,decomposition of high order difference operators,the theory of prior estimates and tech-niques are used.Optimal order estimates in L^2 norm are derived for the error in the approximate solution.Thismethod has already been applied to the numerical simulation of seawater intrusion and migration-accumulationof oil resources.
文摘One of the key problems in the use of underground gas storage is frequent leakage. It can lead to the actual gas storage amount being less than that accounted for. Combining numerical simulation and parameter auto fit, this paper ascertains the dynamic variation of the pressure in the storage reservoir, adjusts the actual injecting and producing gas to fit the accounted pressure with the tested pressure, obtains the gas leakage of the storage, and then determines the difference between accounted amount and leakage amount. The result is the actual reserves of the storage. The simulation result shows that the method presented can provide a theoretic foundation for estimating the leakage amount, thereby ensuring the actual reserves, searching the leakage route, and reducing leakage by adjusting the storage method.
基金Supported by the National Natural Science Foundation of China(11101124 and 11271231)Natural Science Foundation of Shandong Province(ZR2016AM08)National Tackling Key Problems Program(2011ZX05052,2011ZX05011-004)
文摘The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The pressure equation is a nonlinear parabolic equation, the concentration is defined by a convection-diffusion equation and the saturations of different components are stated by nonlinear convection-diffusion equations. The transport pressure appears in the concentration equation and saturation equations in the form of Darcy velocity, and controls their processes. The flow equation is solved by the conservative mixed volume element and the accuracy is improved one order for approximating Darcy velocity. The method of characteristic mixed volume element is applied to solve the concentration, where the diffusion is discretized by a mixed volume element method and the convection is treated by the method of characteristics. The characteristics can confirm strong computational stability at sharp fronts and it can avoid numerical dispersion and nonphysical oscillation. The scheme can adopt a large step while its numerical results have small time-truncation error and high order of accuracy. The mixed volume element method has the law of conservation on every element for the diffusion and it can obtain numerical solutions of the concentration and adjoint vectors. It is most important in numerical simulation to ensure the physical conservative nature. The saturation different components are obtained by the method of characteristic fractional step difference. The computational work is shortened greatly by decomposing a three-dimensional problem into three successive one-dimensional problems and it is completed easily by using the algorithm of speedup. Using the theory and technique of a priori estimates of differential equations, we derive an optimal second order estimates in 12 norm. Numerical examples are given to show the effectiveness and practicability and the method is testified as a powerful tool to solve the important problems.
基金Project supported by the Major State Basic Research Development Program of China(No.G19990328)the National Natural Science Foundation of China(Nos.10771124,10372052,and 11101244)+2 种基金the National Tackling Key Problems Program of China(Nos.2011ZX05011-004,2011ZX05052,and 2005020069)the Doctorate Foundation of the Ministry of Education of China(No.20030422047)the Natural Science Foundation of Shandong Province of China(No.ZR2011AM015)
文摘A kind of second-order implicit upwind fractional step finite difference methods are presented for the numerical simulation of coupled systems for enhanced (chemical) oil production with capillary force in the porous media. Some techniques, e.g., the calculus of variations, the energy analysis method, the commutativity of the products of difference operators, the decomposition of high-order difference operators, and the theory of a priori estimate, are introduced. An optimal order error estimate in the l2 norm is derived. The method is successfully used in the numerical simulation of the enhanced oil production in actual oilfields. The simulation results are satisfactory and interesting.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 92065203, 11527806, 12074417, 11874406, 11774405, and E2J1141)the National Basic Research Program of China (Grant Nos. 2016YFA0300601, 2017YFA0304700, and 2015CB921402)+2 种基金the Strategic Priority Research Program B of the Chinese Academy of Sciences (Grant Nos. XDB33010300, DB28000000, and XDB07010100)the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD302600)Synergetic Extreme Condition User Facility (SECUF) sponsored by the National Development and Reform Commission, China。
文摘Recently, a Corbino-geometry type of Josephson junction constructed on the surface of topological insulators has been proposed for hosting and braiding Majorana zero modes. As a first step to test this proposal, we successfully fabricated Corbino-geometry Josephson junctions(JJs) on the surface of Bi_(2)Te_(3) flakes. Ac Josephson effect with fractional Shapiro steps was observed in the Corbino-geometry JJs while the flux in the junction area was quantized. By analyzing the experimental data using the resistively shunted Josephson junction model, we found that the Corbino-geometry JJs exhibit a skewed current-phase relation due to its high transparency. The results suggest that Corbino-geometry JJs constructed on the surface of topological insulators may provide a promising platform for studying Majorana-related physics.
文摘This paper deals with the inertial manifold and the approximate inertialmanifold concepts of the Navier-Stokes equations with nonhomogeneous boundary conditions and inertial algorithm. Furtheremore,we provide the error estimates of the approximate solutions of the Navier-Stokes Equations.
基金supported by the National Natural Science Foundation of China under the grant number of 52278116.
文摘Fast flow simulation is imperative in the design of pulsating ventilation,which is potentially efficient in indoor air contaminant removal.The execution of the conventional CFD method requires considerable amount of computational resources.In this study,five different numerical schemes were proposed based on fast fluid dynamics(FFD)and fractional step(FS)methods,and were evaluated to achieve quick simulation of airflow/contaminant dispersion.One of these numerical schemes was identified with the best overall computing efficiency for investigating the performance of pulsating ventilation.With this numerical scheme at hand,the air contaminant removal effectiveness of different ventilation types was evaluated.Two kinds of pulsating ventilation and one kind of steady ventilation were tested upon a benchmark isothermal mixing chamber.The effect of adjusting supply velocity parameters on the ventilation performance was also investigated.CO_(2)concentration,airflow pattern,and vortex structure of different ventilation types were illustrated and analyzed.The results reveal that the FS method is more suitable for transient simulation of wall-bounded indoor airflow than the FFD method,and 34%–51%of computing time could be saved compared to the conventional CFD method.Regarding the choice of ventilation type,steady ventilation might result in short-circuit airflow and stagnant zones;alternatively,pulsating ventilation has greater potential in air contaminant removal due to its ever-changing vortex structure.