This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering a...This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering and science.An approximate solution of the system is sought in the formof the finite series over the Müntz polynomials.By using the collocation procedure in the time interval,one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure.This technique also serves as the basis for solving the time-fractional partial differential equations(PDEs).The modified radial basis functions are used for spatial approximation of the solution.The collocation in the solution domain transforms the equation into a system of fractional ordinary differential equations similar to the one mentioned above.Several examples have verified the performance of the proposed novel technique with high accuracy and efficiency.展开更多
In this paper we investigate asymptotic behavior of error of a discrete time hedging strategy in a fractional Black-Scholes model in the sense of Wick-ItS-Skorohod integration. The rate of convergence of the hedging e...In this paper we investigate asymptotic behavior of error of a discrete time hedging strategy in a fractional Black-Scholes model in the sense of Wick-ItS-Skorohod integration. The rate of convergence of the hedging error due to discrete-time trading when the true strategy is known for the trader, is investigated. The result provides new statistical tools to study and detect the effect of the long-memory and the Hurst parameter for the error of discrete time hedging.展开更多
Flocking refers to collective behavior of a large number of interacting entities,where the interactions between discrete individuals produce collective motion on the large scale.We employ an agent-based model to descr...Flocking refers to collective behavior of a large number of interacting entities,where the interactions between discrete individuals produce collective motion on the large scale.We employ an agent-based model to describe the microscopic dynamics of each individual in a flock,and use a fractional partial differential equation(fPDE)to model the evolution of macroscopic quantities of interest.The macroscopic models with phenomenological interaction functions are derived by applying the continuum hypothesis to the microscopic model.Instead of specifying the fPDEs with an ad hoc fractional order for nonlocal flocking dynamics,we learn the effective nonlocal influence function in fPDEs directly from particle trajectories generated by the agent-based simulations.We demonstrate how the learning framework is used to connect the discrete agent-based model to the continuum fPDEs in one-and two-dimensional nonlocal flocking dynamics.In particular,a Cucker-Smale particle model is employed to describe the microscale dynamics of each individual,while Euler equations with nonlocal interaction terms are used to compute the evolution of macroscale quantities.The trajectories generated by the particle simulations mimic the field data of tracking logs that can be obtained experimentally.They can be used to learn the fractional order of the influence function using a Gaussian process regression model implemented with the Bayesian optimization.We show in one-and two-dimensional benchmarks that the numerical solution of the learned Euler equations solved by the finite volume scheme can yield correct density distributions consistent with the collective behavior of the agent-based system solved by the particle method.The proposed method offers new insights into how to scale the discrete agent-based models to the continuum-based PDE models,and could serve as a paradigm on extracting effective governing equations for nonlocal flocking dynamics directly from particle trajectories.展开更多
In this paper,the pricing formulae of the geometric average Asian call option with the fixed and floating strike price under the fractional Brownian motion(FBM)are given out by the method of partial differential equat...In this paper,the pricing formulae of the geometric average Asian call option with the fixed and floating strike price under the fractional Brownian motion(FBM)are given out by the method of partial differential equation(PDE).The call-put parity for the geometric average Asian options is given.The results are generalization of option pricing under standard Brownian motion.展开更多
Under the assumption of the underlying asset is driven by the mixed fractional Brownian motion, we obtain the mixed fractionalBlack-Scholes partial differential equation by fractional Ito formula, and the pricing form...Under the assumption of the underlying asset is driven by the mixed fractional Brownian motion, we obtain the mixed fractionalBlack-Scholes partial differential equation by fractional Ito formula, and the pricing formula of perpetual American put option bythis partial differential equation theory.展开更多
In this paper, by using the optimal stopping theory, the semilinear Black-Scholes partial differential equation (PDE) was invesigated in a fixed domain for valuing two assets of American (call-max/put-min) options...In this paper, by using the optimal stopping theory, the semilinear Black-Scholes partial differential equation (PDE) was invesigated in a fixed domain for valuing two assets of American (call-max/put-min) options. From the viscosity solution of a PDE, a unique viscosity solution was obtained for the semilinear Black-Scholes PDE.展开更多
This paper addresses a boundary state feedback control problem for a coupled system of time fractional partial differential equations(PDEs)with non-constant(space-dependent)coefficients and different-type boundary con...This paper addresses a boundary state feedback control problem for a coupled system of time fractional partial differential equations(PDEs)with non-constant(space-dependent)coefficients and different-type boundary conditions(BCs).The BCs could be heterogeneous-type or mixed-type.Specifically,this coupled system has different BCs at the uncontrolled side for heterogeneous-type and the same BCs at the uncontrolled side for mixed-type.The main contribution is to extend PDE backstepping to the boundary control problem of time fractional PDEs with space-dependent parameters and different-type BCs.With the backstepping transformation and the fractional Lyapunov method,the Mittag-Leffler stability of the closed-loop system is obtained.A numerical scheme is proposed to simulate the fractional case when kernel equations have not an explicit solution.展开更多
Based on a subspace method and a linear approximation method,a convex algorithm is designed to solve a kind of non-convex PDE constrained fractional optimization problem in this paper.This PDE constrained problem is a...Based on a subspace method and a linear approximation method,a convex algorithm is designed to solve a kind of non-convex PDE constrained fractional optimization problem in this paper.This PDE constrained problem is an infinitedimensional Hermitian eigenvalue optimization problem with non-convex and low regularity.Usually,such a continuous optimization problem can be transformed into a large-scale discrete optimization problem by using the finite element methods.We use a subspace technique to reduce the scale of discrete problem,which is really effective to deal with the large-scale problem.To overcome the difficulties caused by the low regularity and non-convexity,we creatively introduce several new artificial variables to transform the non-convex problem into a convex linear semidefinite programming.By introducing linear approximation vectors,this linear semidefinite programming can be approximated by a very simple linear relaxation problem.Moreover,we theoretically prove this approximation.Our proposed algorithm is used to optimize the photonic band gaps of two-dimensional Gallium Arsenide-based photonic crystals as an application.The results of numerical examples show the effectiveness of our proposed algorithm,while they also provide several optimized photonic crystal structures with a desired wide-band-gap.In addition,our proposed algorithm provides a technical way for solving a kind of PDE constrained fractional optimization problems with a generalized eigenvalue constraint.展开更多
In this paper,a two dimensional(2D)fractional Black-Scholes(FBS)model on two assets following independent geometric Lévy processes is solved numerically.A high order convergent implicit difference scheme is const...In this paper,a two dimensional(2D)fractional Black-Scholes(FBS)model on two assets following independent geometric Lévy processes is solved numerically.A high order convergent implicit difference scheme is constructed and detailed numerical analysis is established.The fractional derivative is a quasidifferential operator,whose nonlocal nature yields a dense lower Hessenberg block coefficient matrix.In order to speed up calculation and save storage space,a fast bi-conjugate gradient stabilized(FBi-CGSTAB)method is proposed to solve the resultant linear system.Finally,one example with a known exact solution is provided to assess the effectiveness and efficiency of the presented fast numerical technique.The pricing of a European Call-on-Min option is showed in the other example,in which the influence of fractional derivative order and volatility on the 2D FBS model is revealed by comparing with the classical 2D B-S model.展开更多
Cancer belongs to the class of discascs which is symbolized by out of control cells growth.These cells affect DNAs and damage them.There exist many treatments avail-able in medical science as radiation therapy,targete...Cancer belongs to the class of discascs which is symbolized by out of control cells growth.These cells affect DNAs and damage them.There exist many treatments avail-able in medical science as radiation therapy,targeted therapy,surgery,palliative care and chemotherapy.Cherotherapy is one of the most popular treatments which depends on the type,location and grade of cancer.In this paper,we are working on modeling and prediction of the effect of chemotherapy on cancer cells using a fractional differen-tial equation by using the differential operator in Caputos sense.The presented model depicts the interaction between tumor,norrnal and immune cells in a tumor by using a system of four coupled fractional partial differential equations(PDEs).For this system,initial conditions of tumor cells and dimensions are taken in such a way that tumor is spread out enough in size and can be detected easily with the clinical machines.An operational matrix method with Genocchi polynomials is applied to study this system of fractional PDFs(FPDEs).An operational matrix for fract.ional differentiation is derived.Applying the collocation method and using this matrix,the nonlinear system is reduced to a system of algebraic equations,which can be solved using Newton iteration method.The salient features of this paper are the pictorial presentations of the numerical solution of the concerned equation for different particular cases to show the effect of fractional exponent on diffusive nature of immune cells,tumor cells,normal cells and chemother-apeutic drug and depict the interaction among immune cells,normal cells and tumor cells in a tumor site.展开更多
The bounded and smooth solitary wave solutions of 10 nonlinear evolution equations with a positive fractional power term of dependent variable are successfully obtained by homogeneous balance principle and with the ai...The bounded and smooth solitary wave solutions of 10 nonlinear evolution equations with a positive fractional power term of dependent variable are successfully obtained by homogeneous balance principle and with the aid of sub-ODEs that admits a solution of sech-power or tanh-power type.In the special cases that the fractional power equals to 1 and 2,the solitary wave solutions of more than 10 important model equations arisen from mathematical physics are easily rediscovered.展开更多
该文考虑了一类时间变换的强马氏过程,时间变换是截断从属过程的逆过程,这是对文章(Chen Zhenqing.Time fractional equations and probabilistic representation.Chaos Solitons and Fractals,2017,102:168-174)中结论的推广.该文建立...该文考虑了一类时间变换的强马氏过程,时间变换是截断从属过程的逆过程,这是对文章(Chen Zhenqing.Time fractional equations and probabilistic representation.Chaos Solitons and Fractals,2017,102:168-174)中结论的推广.该文建立了一种从一般Bernstein函数到广义时间分数阶偏微分方程的对应关系.展开更多
基金funded by the National Key Research and Development Program of China(No.2021YFB2600704)the National Natural Science Foundation of China(No.52171272)the Significant Science and Technology Project of the Ministry of Water Resources of China(No.SKS-2022112).
文摘This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering and science.An approximate solution of the system is sought in the formof the finite series over the Müntz polynomials.By using the collocation procedure in the time interval,one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure.This technique also serves as the basis for solving the time-fractional partial differential equations(PDEs).The modified radial basis functions are used for spatial approximation of the solution.The collocation in the solution domain transforms the equation into a system of fractional ordinary differential equations similar to the one mentioned above.Several examples have verified the performance of the proposed novel technique with high accuracy and efficiency.
基金Supported by the National Natural Science Foundation of China(11671115)the Natural Science Foundation of Zhejiang Province(LY14A010025)
文摘In this paper we investigate asymptotic behavior of error of a discrete time hedging strategy in a fractional Black-Scholes model in the sense of Wick-ItS-Skorohod integration. The rate of convergence of the hedging error due to discrete-time trading when the true strategy is known for the trader, is investigated. The result provides new statistical tools to study and detect the effect of the long-memory and the Hurst parameter for the error of discrete time hedging.
文摘Flocking refers to collective behavior of a large number of interacting entities,where the interactions between discrete individuals produce collective motion on the large scale.We employ an agent-based model to describe the microscopic dynamics of each individual in a flock,and use a fractional partial differential equation(fPDE)to model the evolution of macroscopic quantities of interest.The macroscopic models with phenomenological interaction functions are derived by applying the continuum hypothesis to the microscopic model.Instead of specifying the fPDEs with an ad hoc fractional order for nonlocal flocking dynamics,we learn the effective nonlocal influence function in fPDEs directly from particle trajectories generated by the agent-based simulations.We demonstrate how the learning framework is used to connect the discrete agent-based model to the continuum fPDEs in one-and two-dimensional nonlocal flocking dynamics.In particular,a Cucker-Smale particle model is employed to describe the microscale dynamics of each individual,while Euler equations with nonlocal interaction terms are used to compute the evolution of macroscale quantities.The trajectories generated by the particle simulations mimic the field data of tracking logs that can be obtained experimentally.They can be used to learn the fractional order of the influence function using a Gaussian process regression model implemented with the Bayesian optimization.We show in one-and two-dimensional benchmarks that the numerical solution of the learned Euler equations solved by the finite volume scheme can yield correct density distributions consistent with the collective behavior of the agent-based system solved by the particle method.The proposed method offers new insights into how to scale the discrete agent-based models to the continuum-based PDE models,and could serve as a paradigm on extracting effective governing equations for nonlocal flocking dynamics directly from particle trajectories.
基金Shanghai Leading Academic Discipline Project,China(No.S30405)Special Funds for Major Specialties of Shanghai Education Committee,China
文摘In this paper,the pricing formulae of the geometric average Asian call option with the fixed and floating strike price under the fractional Brownian motion(FBM)are given out by the method of partial differential equation(PDE).The call-put parity for the geometric average Asian options is given.The results are generalization of option pricing under standard Brownian motion.
文摘Under the assumption of the underlying asset is driven by the mixed fractional Brownian motion, we obtain the mixed fractionalBlack-Scholes partial differential equation by fractional Ito formula, and the pricing formula of perpetual American put option bythis partial differential equation theory.
基金Project supported by the National Natural Science Foundation of China (Grant No.10271072)
文摘In this paper, by using the optimal stopping theory, the semilinear Black-Scholes partial differential equation (PDE) was invesigated in a fixed domain for valuing two assets of American (call-max/put-min) options. From the viscosity solution of a PDE, a unique viscosity solution was obtained for the semilinear Black-Scholes PDE.
基金supported by National Natural Science Foundation of China under Grant No.62203070Science and Technology Project of Changzhou University under Grant Nos.ZMF20020460,KYP2102196C,and KYP2202225C+1 种基金Changzhou Science and Technology Agency under Grant No.CE20205048the PhD Scientific Research Foundation of Binzhou University under Grant No.2020Y04.
文摘This paper addresses a boundary state feedback control problem for a coupled system of time fractional partial differential equations(PDEs)with non-constant(space-dependent)coefficients and different-type boundary conditions(BCs).The BCs could be heterogeneous-type or mixed-type.Specifically,this coupled system has different BCs at the uncontrolled side for heterogeneous-type and the same BCs at the uncontrolled side for mixed-type.The main contribution is to extend PDE backstepping to the boundary control problem of time fractional PDEs with space-dependent parameters and different-type BCs.With the backstepping transformation and the fractional Lyapunov method,the Mittag-Leffler stability of the closed-loop system is obtained.A numerical scheme is proposed to simulate the fractional case when kernel equations have not an explicit solution.
基金supported by National Natural Science Foundation of China(Grant Nos.12171052 and 11871115)BUPT Excellent Ph.D.Students Foundation(Grant No.CX2021320).
文摘Based on a subspace method and a linear approximation method,a convex algorithm is designed to solve a kind of non-convex PDE constrained fractional optimization problem in this paper.This PDE constrained problem is an infinitedimensional Hermitian eigenvalue optimization problem with non-convex and low regularity.Usually,such a continuous optimization problem can be transformed into a large-scale discrete optimization problem by using the finite element methods.We use a subspace technique to reduce the scale of discrete problem,which is really effective to deal with the large-scale problem.To overcome the difficulties caused by the low regularity and non-convexity,we creatively introduce several new artificial variables to transform the non-convex problem into a convex linear semidefinite programming.By introducing linear approximation vectors,this linear semidefinite programming can be approximated by a very simple linear relaxation problem.Moreover,we theoretically prove this approximation.Our proposed algorithm is used to optimize the photonic band gaps of two-dimensional Gallium Arsenide-based photonic crystals as an application.The results of numerical examples show the effectiveness of our proposed algorithm,while they also provide several optimized photonic crystal structures with a desired wide-band-gap.In addition,our proposed algorithm provides a technical way for solving a kind of PDE constrained fractional optimization problems with a generalized eigenvalue constraint.
基金supported by the Natural Science Foundation of Fujian Province2017J01555,2017J01502,2017J01557 and 2019J01646the National NSF of China 11201077+1 种基金China Scholarship Fundthe Natural Science Foundation of Fujian Provincial Department of Education JAT160274
文摘In this paper,a two dimensional(2D)fractional Black-Scholes(FBS)model on two assets following independent geometric Lévy processes is solved numerically.A high order convergent implicit difference scheme is constructed and detailed numerical analysis is established.The fractional derivative is a quasidifferential operator,whose nonlocal nature yields a dense lower Hessenberg block coefficient matrix.In order to speed up calculation and save storage space,a fast bi-conjugate gradient stabilized(FBi-CGSTAB)method is proposed to solve the resultant linear system.Finally,one example with a known exact solution is provided to assess the effectiveness and efficiency of the presented fast numerical technique.The pricing of a European Call-on-Min option is showed in the other example,in which the influence of fractional derivative order and volatility on the 2D FBS model is revealed by comparing with the classical 2D B-S model.
文摘Cancer belongs to the class of discascs which is symbolized by out of control cells growth.These cells affect DNAs and damage them.There exist many treatments avail-able in medical science as radiation therapy,targeted therapy,surgery,palliative care and chemotherapy.Cherotherapy is one of the most popular treatments which depends on the type,location and grade of cancer.In this paper,we are working on modeling and prediction of the effect of chemotherapy on cancer cells using a fractional differen-tial equation by using the differential operator in Caputos sense.The presented model depicts the interaction between tumor,norrnal and immune cells in a tumor by using a system of four coupled fractional partial differential equations(PDEs).For this system,initial conditions of tumor cells and dimensions are taken in such a way that tumor is spread out enough in size and can be detected easily with the clinical machines.An operational matrix method with Genocchi polynomials is applied to study this system of fractional PDFs(FPDEs).An operational matrix for fract.ional differentiation is derived.Applying the collocation method and using this matrix,the nonlinear system is reduced to a system of algebraic equations,which can be solved using Newton iteration method.The salient features of this paper are the pictorial presentations of the numerical solution of the concerned equation for different particular cases to show the effect of fractional exponent on diffusive nature of immune cells,tumor cells,normal cells and chemother-apeutic drug and depict the interaction among immune cells,normal cells and tumor cells in a tumor site.
基金Supported by the Natural Science Foundation of Education Department of Henan Province of China under Grant No.2011B110013
文摘The bounded and smooth solitary wave solutions of 10 nonlinear evolution equations with a positive fractional power term of dependent variable are successfully obtained by homogeneous balance principle and with the aid of sub-ODEs that admits a solution of sech-power or tanh-power type.In the special cases that the fractional power equals to 1 and 2,the solitary wave solutions of more than 10 important model equations arisen from mathematical physics are easily rediscovered.
文摘该文考虑了一类时间变换的强马氏过程,时间变换是截断从属过程的逆过程,这是对文章(Chen Zhenqing.Time fractional equations and probabilistic representation.Chaos Solitons and Fractals,2017,102:168-174)中结论的推广.该文建立了一种从一般Bernstein函数到广义时间分数阶偏微分方程的对应关系.