Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology refe...Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).展开更多
In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechani...In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechanical operators corresponding to the generation of fractional Fourier transform.The core function of the coordinate-momentum exchange operators in the addition law of fractional Fourier transform was analyzed too.In this paper,the bivariate operator Hermite polynomial theory and the technique of integration within an ordered product of operators(IWOP)are used to establish the entanglement fractional Fourier transform theory to the extent of quantum.A new function generating formula and an operator for generating quantum entangled fractional Fourier transform are obtained using the fractional Fourier transform relationship in a pair of conjugated entangled state representations.展开更多
Currently, it is difficult for people to express signal information simultaneously in the time and frequency domains when analyzing acoustic logging signals using a simple-time or frequency-domain method. It is diffic...Currently, it is difficult for people to express signal information simultaneously in the time and frequency domains when analyzing acoustic logging signals using a simple-time or frequency-domain method. It is difficult to use a single type of time-frequency analysis method, which affects the feasibility of acoustic logging signal analysis. In order to solve these problems, in this paper, a fractional Fourier transform and smooth pseudo Wigner Ville distribution (SPWD) were combined and used to analyze array acoustic logging signals. The time-frequency distribution of signals with the variation of orders of fractional Fourier transform was obtained, and the characteristics of the time-frequency distribution of different reservoirs under different orders were summarized. Because of the rotational characteristics of the fractional Fourier transform, the rotation speed of the cross terms was faster than those of primary waves, shear waves, Stoneley waves, and pseudo Rayleigh waves. By choosing different orders for different reservoirs according to the actual circumstances, the cross terms were separated from the four kinds of waves. In this manner, we could extract reservoir information by studying the characteristics of partial waves. Actual logging data showed that the method outlined in this paper greatly weakened cross-term interference and enhanced the ability to identify partial wave signals.展开更多
The FOURIER transform is one of the most frequently used tools in signal analysis. A generalization of the Fourier transform-the fractional Fourier transform-has become a powerful tool for time-varying signal analys...The FOURIER transform is one of the most frequently used tools in signal analysis. A generalization of the Fourier transform-the fractional Fourier transform-has become a powerful tool for time-varying signal analysis. The mean square error(MSE) is used as design criteria to estimate signal. Wiener filter, which can be implement in O(NlogN) time, is suited for time-invariant degradation models. For time-variant and non-stationary processes, however, the linear estimate requires O(N 2 ). Filtering in fractional Fourier domains permits reduction of the error compared with ordinary Fourier domain filtering while requiring O(NlogN) implementation time. The blurred images that have several degradation models with different SNR are restored in the experiments. The results show that the method presented in this paper is valid and that the effect of restoration is improved as SNR is increased.展开更多
To improve the data rate of underwater acoustic frequency-hopped communications, frequency hopping is applied to different orders of fractional Fourier domain (FrFD), to enable non-intrusive, bandwidth-limited acousti...To improve the data rate of underwater acoustic frequency-hopped communications, frequency hopping is applied to different orders of fractional Fourier domain (FrFD), to enable non-intrusive, bandwidth-limited acoustic communications. An FrFD frequency-hopped communication method based on chirp modulation, namely multiple chirp shift keying-FrFD hopping (MCSK-FrFDH), is proposed for underwater acoustic channels. Validated by both simulations and experimental results, this method can reach a bandwidth efficiency twice more than conventional frequency-hopped methods with the same data rate and anti-multipath capability, suggesting that the proposed method achieves a better performance than the traditional frequency hopped communication in underwater acoustic communication channels. Results also show that in practical scenarios, the MCSK-FrFDH system with longer symbol length performs better at the low signal-to-noise ratio (SNR), while the system with larger frequency sweeping range performs better at a high SNR.展开更多
Distinguishing close chirp-rates of different linear frequency modulation (LFM) signals under concentrated and complicated signal environment was studied. Firstly, detection and parameter estimation of multi-compone...Distinguishing close chirp-rates of different linear frequency modulation (LFM) signals under concentrated and complicated signal environment was studied. Firstly, detection and parameter estimation of multi-component LFM signal were used by discrete fast fractional Fourier transform (FrFT). Then the expression of chirp-rate resolution in fractional Fourier domain (FrFD) was deduced from discrete normalize time-frequency distribution, when multi-component LFM signal had only one center frequency. Furthermore, the detail influence of the sampling time, sampling frequency and chirp-rate upon the resolution was analyzed by partial differential equation. Simulation results and analysis indicate that increasing the sampling time can enhance the resolution, but the influence of the sampling frequency can he omitted. What's more, in multi-component LFM signal, the chirp-rate resolution of FrFT is no less than a minimal value, and it mainly dependent on the biggest value of chirp-rates, with which it has an approximately positive exponential relationship.展开更多
Traditionally,beamforming using fractional Fourier transform(FrFT) involves a trial-and-error based FrFT order selection which is impractical.A new numerical order selection scheme is presented based on fractional p...Traditionally,beamforming using fractional Fourier transform(FrFT) involves a trial-and-error based FrFT order selection which is impractical.A new numerical order selection scheme is presented based on fractional power spectra(FrFT moment) of the linear chirp signal.This method can adaptively determine the optimum FrFT order by maximizing the second-order central FrFT moment.This makes the desired chirp signal substantially concentrated whereas the noise is rejected considerably.This improves the mean square error minimization beamformer by reducing effectively the signal-noise cross terms due to the finite data length de-correlation operation.Simulation results show that the new method works well under a wide range of signal to noise ratio and signal to interference ratio.展开更多
The classical Gerchberg-Saxton algorithm is introduced into the image recovery in fractional Fourier domain after adaptation. When this algorithm is applied directly, its performance is good for smoothed image, but ba...The classical Gerchberg-Saxton algorithm is introduced into the image recovery in fractional Fourier domain after adaptation. When this algorithm is applied directly, its performance is good for smoothed image, but bad for unsmoothed image. Based on the diversity of fractional Fourier transform on its orders, this paper suggests a novel iterative algorithm, which extracts the information of the original image from amplitudes of its fractional Fourier transform at two orders. This new algorithm consists of two independent Gerchberg-Saxton procedures and an averaging operation in each circle. Numerical simulations are carried out to show its validity for both smoothed and unsmoothed images with most pairs of orders in the interval [0, 1].展开更多
An approach is proposed to realize a digital channelized receiver in the fractional Fourier domain (FRFD) for signal intercept applications. The presented architecture can be considered as a generalization of that i...An approach is proposed to realize a digital channelized receiver in the fractional Fourier domain (FRFD) for signal intercept applications. The presented architecture can be considered as a generalization of that in the traditional Fourier domain. Since the linear frequency modulation (LFM) signal has a good energy concentration in the FRFD, by choosing an appropriate fractional Fourier transform (FRFT) order, the presented architecture can concentrate the broadband LFM signal into only one sub-channel and that will prevent it from crossing several sub-channels. Thus the performance of the signal detection and parameter estimation after the sub-channel output will be improved significantly. The computational complexity is reduced enormously due to the implementation of the polyphase filter bank decomposition, thus the proposed architecture can be realized as efficiently as in the Fourier domain. The related simulation results are presented to verify the validity of the theories and methods involved in this paper.展开更多
In this paper a joint timing and frequency synchronization method based on Fractional Fourier Transform (FIFT) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) system. The combination of two chirp...In this paper a joint timing and frequency synchronization method based on Fractional Fourier Transform (FIFT) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) system. The combination of two chirp signals with opposite chirp rates are used as the training signal, the received training signal with timing and frequency offset is transformed by FrFT and the two peaks representing two chirps in FrFT domain are detected, then the position coordinates of the two peaks are precisely corrected and substituted into an equation group to calculate timing and frequency offset simultaneously. This method only needs one FrFT calculation to implement synchronization, the computational complexity is equal to that of FFT and less than that of correlation or maximum likelihood calculation of existing methods, and estimation range of frequency offset is Large, greater than half the signal bandwidth, while the simulation results show that even at low SNR it can accurately estimate timing and frequency offset and the estimation error is less than that of existing methods.展开更多
Presents a digital watermarking technique based on discrete fractional Fourier transform (DFRFT), discusses the transformation of the original image by DFRFT, and the modification of DFRFT coefficients of the original...Presents a digital watermarking technique based on discrete fractional Fourier transform (DFRFT), discusses the transformation of the original image by DFRFT, and the modification of DFRFT coefficients of the original image by the information of watermark, and concludes from experimental results that the proposed technique is robust to lossy compression attack.展开更多
Sampling is a bridge between continuous-time and discrete-time signals,which is import-ant to digital signal processing.The fractional Fourier transform(FrFT)that serves as a generaliz-ation of the FT can characterize...Sampling is a bridge between continuous-time and discrete-time signals,which is import-ant to digital signal processing.The fractional Fourier transform(FrFT)that serves as a generaliz-ation of the FT can characterize signals in multiple fractional Fourier domains,and therefore can provide new perspectives for signal sampling and reconstruction.In this paper,we review recent de-velopments of the sampling theorem associated with the FrFT,including signal reconstruction and fractional spectral analysis of uniform sampling,nonuniform samplings due to various factors,and sub-Nyquist sampling,where bandlimited signals in the fractional Fourier domain are mainly taken into consideration.Moreover,we provide several future research topics of the sampling theorem as-sociated with the FrFT.展开更多
The method of FRactional Fourier Transform (FRFT) is introduced to Transform Domain Communication System (TDCS) for signal transforming in the paper after theoretical analysis. The method yields optimal Basis Function...The method of FRactional Fourier Transform (FRFT) is introduced to Transform Domain Communication System (TDCS) for signal transforming in the paper after theoretical analysis. The method yields optimal Basis Function (BF) by FRFT with optimal transform angle. The TDCS using the proposed method has wider usable spectrum, stronger robustness and better ability of anti non-stationary jamming than using usual methods, such as Fourier Transform (FT), Auto Regressive (AR), Wavelet Transform (WT), etc. The main simulation results are as follows. First, the Bit Error Rate (BER) Pb is close to theoretical bound of no jamming no matter in single tone or in linear chirp interference. Second, the interference-to-signal ratio J /E is at least 12dB more than that of Direct Spread Spectrum System (DSSS) under the same BER if the spectrum hopping-to-signal ratio is 1:20 in chirp plus hopping interfering. Third, the Eb /N 0(when estimation difference is 90% between trans- mitter and receiver) is about 3.5dB or about 0.5dB (when estimation difference is 10% between transmitter and receiver) more than that of theoretical result when no estimation difference un-der Pb=10-2.展开更多
Starting from the diffraction imaging process,we have discussed the relationship between optical imaging system and fractional Fourier transform, and proposed a specific system which can form an inverse amplified imag...Starting from the diffraction imaging process,we have discussed the relationship between optical imaging system and fractional Fourier transform, and proposed a specific system which can form an inverse amplified image of input function.展开更多
By introducing a convenient complex form of the α-th 2-dimensional fractional Fourier transform (CFFT) operation we find that it possesses new eigenmodes which are two-mode Hermite polynomials. We prove the eigenvalu...By introducing a convenient complex form of the α-th 2-dimensional fractional Fourier transform (CFFT) operation we find that it possesses new eigenmodes which are two-mode Hermite polynomials. We prove the eigenvalues of propagation in quadratic graded-index medium over a definite distance are the same as the eigenvalues of the α-th CFFT, which means that our definition of the α-th CFFT is physically meaningful.展开更多
By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hyperbolic function,i.e.,tan α → tanh α,sin α →〉 sinh α,we find the quantum mechanical fractional...By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hyperbolic function,i.e.,tan α → tanh α,sin α →〉 sinh α,we find the quantum mechanical fractional squeezing transformation(FrST) which satisfies additivity.By virtue of the integration technique within the ordered product of operators(IWOP) we derive the unitary operator responsible for the FrST,which is composite and is made of e^iπa+a/2 and exp[iα/2(a^2 +a^+2).The FrST may be implemented in combinations of quadratic nonlinear crystals with different phase mismatches.展开更多
This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Und...This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.展开更多
This paper introduces Lorentz beams to describe certain laser sources that produce highly divergent fields.The fractional Fourier transform (FRFT) is applied to treat the propagation of Lorentz beams.Based on the de...This paper introduces Lorentz beams to describe certain laser sources that produce highly divergent fields.The fractional Fourier transform (FRFT) is applied to treat the propagation of Lorentz beams.Based on the definition of convolution and the convolution theorem of the Fourier transform,an analytical expression for a Lorentz beam passing through a FRFT system has been derived.By using the derived formula,the properties of a Lorentz beam in the FRFT plane are illustrated numerically.展开更多
In this paper the relations between two spreads, between two group delays, and between one spread and one group delay in fractional Fourier transform (FRFT) domains, are presented and three theorems on the uncertain...In this paper the relations between two spreads, between two group delays, and between one spread and one group delay in fractional Fourier transform (FRFT) domains, are presented and three theorems on the uncertainty principle in FRFT domains are also developed. Theorem 1 gives the bounds of two spreads in two FRFT domains. Theorem 2 shows the uncertainty relation between two group delays in two FRFT domains. Theorem 3 presents the crossed uncertainty relation between one group delay and one spread in two FRFT domains. The novelty of their results lies in connecting the products of different physical measures and giving their physical interpretations. The existing uncertainty principle in the FRFT domain is only a special ease of theorem 1, and the conventional uncertainty principle in time-frequency domains is a special case of their results. Therefore, three theorems develop the relations of two spreads in time-frequency domains into the relations between two spreads, between two group delays, and between one spread and one group delay in FRFT domains.展开更多
A new method for the rejection of linear frequency modulation (LFM) interference in direct sequence spread spectrum (DSSS) system based on the fractional Fourier transform is proposed, and the configuration of the rec...A new method for the rejection of linear frequency modulation (LFM) interference in direct sequence spread spectrum (DSSS) system based on the fractional Fourier transform is proposed, and the configuration of the receiver with an interference exciser is also presented. Based on the property that the fractional Fourier transform of a signal is equivalent to rotating the signal in the time-frequency plane, the received signal is transform into a certain fractional Fourier domain, this transform will result in the least spectrum overlap between the signal and interference. Then, a narrowband filter is exploited to extract most of the interference energy. The performance analyses show that remarkable improvements in signal-to-noise ratio (SNR) and bit-error-ratio (BER) are obtained.展开更多
文摘Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).
基金Project supported by the National Natural Science Foundation of China(Grant No.11775208)the Foundation for Young Talents at the College of Anhui Province,China(Grant Nos.gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.KJ2020A0638 and 2022AH051586)。
文摘In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechanical operators corresponding to the generation of fractional Fourier transform.The core function of the coordinate-momentum exchange operators in the addition law of fractional Fourier transform was analyzed too.In this paper,the bivariate operator Hermite polynomial theory and the technique of integration within an ordered product of operators(IWOP)are used to establish the entanglement fractional Fourier transform theory to the extent of quantum.A new function generating formula and an operator for generating quantum entangled fractional Fourier transform are obtained using the fractional Fourier transform relationship in a pair of conjugated entangled state representations.
基金supported by National Natural Science Foundation of China(Grant No.40874059)
文摘Currently, it is difficult for people to express signal information simultaneously in the time and frequency domains when analyzing acoustic logging signals using a simple-time or frequency-domain method. It is difficult to use a single type of time-frequency analysis method, which affects the feasibility of acoustic logging signal analysis. In order to solve these problems, in this paper, a fractional Fourier transform and smooth pseudo Wigner Ville distribution (SPWD) were combined and used to analyze array acoustic logging signals. The time-frequency distribution of signals with the variation of orders of fractional Fourier transform was obtained, and the characteristics of the time-frequency distribution of different reservoirs under different orders were summarized. Because of the rotational characteristics of the fractional Fourier transform, the rotation speed of the cross terms was faster than those of primary waves, shear waves, Stoneley waves, and pseudo Rayleigh waves. By choosing different orders for different reservoirs according to the actual circumstances, the cross terms were separated from the four kinds of waves. In this manner, we could extract reservoir information by studying the characteristics of partial waves. Actual logging data showed that the method outlined in this paper greatly weakened cross-term interference and enhanced the ability to identify partial wave signals.
文摘The FOURIER transform is one of the most frequently used tools in signal analysis. A generalization of the Fourier transform-the fractional Fourier transform-has become a powerful tool for time-varying signal analysis. The mean square error(MSE) is used as design criteria to estimate signal. Wiener filter, which can be implement in O(NlogN) time, is suited for time-invariant degradation models. For time-variant and non-stationary processes, however, the linear estimate requires O(N 2 ). Filtering in fractional Fourier domains permits reduction of the error compared with ordinary Fourier domain filtering while requiring O(NlogN) implementation time. The blurred images that have several degradation models with different SNR are restored in the experiments. The results show that the method presented in this paper is valid and that the effect of restoration is improved as SNR is increased.
基金supported by the National Natural Science Foundation of China(4137604041676024)
文摘To improve the data rate of underwater acoustic frequency-hopped communications, frequency hopping is applied to different orders of fractional Fourier domain (FrFD), to enable non-intrusive, bandwidth-limited acoustic communications. An FrFD frequency-hopped communication method based on chirp modulation, namely multiple chirp shift keying-FrFD hopping (MCSK-FrFDH), is proposed for underwater acoustic channels. Validated by both simulations and experimental results, this method can reach a bandwidth efficiency twice more than conventional frequency-hopped methods with the same data rate and anti-multipath capability, suggesting that the proposed method achieves a better performance than the traditional frequency hopped communication in underwater acoustic communication channels. Results also show that in practical scenarios, the MCSK-FrFDH system with longer symbol length performs better at the low signal-to-noise ratio (SNR), while the system with larger frequency sweeping range performs better at a high SNR.
基金Sponsored by the National Natural Science Foundation of China (60232010 ,60572094)the National Science Foundation of China for Distin-guished Young Scholars (60625104)
文摘Distinguishing close chirp-rates of different linear frequency modulation (LFM) signals under concentrated and complicated signal environment was studied. Firstly, detection and parameter estimation of multi-component LFM signal were used by discrete fast fractional Fourier transform (FrFT). Then the expression of chirp-rate resolution in fractional Fourier domain (FrFD) was deduced from discrete normalize time-frequency distribution, when multi-component LFM signal had only one center frequency. Furthermore, the detail influence of the sampling time, sampling frequency and chirp-rate upon the resolution was analyzed by partial differential equation. Simulation results and analysis indicate that increasing the sampling time can enhance the resolution, but the influence of the sampling frequency can he omitted. What's more, in multi-component LFM signal, the chirp-rate resolution of FrFT is no less than a minimal value, and it mainly dependent on the biggest value of chirp-rates, with which it has an approximately positive exponential relationship.
基金supported by the National Natural Science Foundation of China (606720846060203760736006)
文摘Traditionally,beamforming using fractional Fourier transform(FrFT) involves a trial-and-error based FrFT order selection which is impractical.A new numerical order selection scheme is presented based on fractional power spectra(FrFT moment) of the linear chirp signal.This method can adaptively determine the optimum FrFT order by maximizing the second-order central FrFT moment.This makes the desired chirp signal substantially concentrated whereas the noise is rejected considerably.This improves the mean square error minimization beamformer by reducing effectively the signal-noise cross terms due to the finite data length de-correlation operation.Simulation results show that the new method works well under a wide range of signal to noise ratio and signal to interference ratio.
文摘The classical Gerchberg-Saxton algorithm is introduced into the image recovery in fractional Fourier domain after adaptation. When this algorithm is applied directly, its performance is good for smoothed image, but bad for unsmoothed image. Based on the diversity of fractional Fourier transform on its orders, this paper suggests a novel iterative algorithm, which extracts the information of the original image from amplitudes of its fractional Fourier transform at two orders. This new algorithm consists of two independent Gerchberg-Saxton procedures and an averaging operation in each circle. Numerical simulations are carried out to show its validity for both smoothed and unsmoothed images with most pairs of orders in the interval [0, 1].
基金supported by the Program for New Century Excellent Talents in University(NCET-06-0921)
文摘An approach is proposed to realize a digital channelized receiver in the fractional Fourier domain (FRFD) for signal intercept applications. The presented architecture can be considered as a generalization of that in the traditional Fourier domain. Since the linear frequency modulation (LFM) signal has a good energy concentration in the FRFD, by choosing an appropriate fractional Fourier transform (FRFT) order, the presented architecture can concentrate the broadband LFM signal into only one sub-channel and that will prevent it from crossing several sub-channels. Thus the performance of the signal detection and parameter estimation after the sub-channel output will be improved significantly. The computational complexity is reduced enormously due to the implementation of the polyphase filter bank decomposition, thus the proposed architecture can be realized as efficiently as in the Fourier domain. The related simulation results are presented to verify the validity of the theories and methods involved in this paper.
文摘In this paper a joint timing and frequency synchronization method based on Fractional Fourier Transform (FIFT) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) system. The combination of two chirp signals with opposite chirp rates are used as the training signal, the received training signal with timing and frequency offset is transformed by FrFT and the two peaks representing two chirps in FrFT domain are detected, then the position coordinates of the two peaks are precisely corrected and substituted into an equation group to calculate timing and frequency offset simultaneously. This method only needs one FrFT calculation to implement synchronization, the computational complexity is equal to that of FFT and less than that of correlation or maximum likelihood calculation of existing methods, and estimation range of frequency offset is Large, greater than half the signal bandwidth, while the simulation results show that even at low SNR it can accurately estimate timing and frequency offset and the estimation error is less than that of existing methods.
文摘Presents a digital watermarking technique based on discrete fractional Fourier transform (DFRFT), discusses the transformation of the original image by DFRFT, and the modification of DFRFT coefficients of the original image by the information of watermark, and concludes from experimental results that the proposed technique is robust to lossy compression attack.
基金supported in part by the National Natural Foundation of China(NSFC)(Nos.62027801 and U1833203)the Beijing Natural Science Foundation(No.L191004).
文摘Sampling is a bridge between continuous-time and discrete-time signals,which is import-ant to digital signal processing.The fractional Fourier transform(FrFT)that serves as a generaliz-ation of the FT can characterize signals in multiple fractional Fourier domains,and therefore can provide new perspectives for signal sampling and reconstruction.In this paper,we review recent de-velopments of the sampling theorem associated with the FrFT,including signal reconstruction and fractional spectral analysis of uniform sampling,nonuniform samplings due to various factors,and sub-Nyquist sampling,where bandlimited signals in the fractional Fourier domain are mainly taken into consideration.Moreover,we provide several future research topics of the sampling theorem as-sociated with the FrFT.
基金Supported by Fund of National Key Lab.of Communication.
文摘The method of FRactional Fourier Transform (FRFT) is introduced to Transform Domain Communication System (TDCS) for signal transforming in the paper after theoretical analysis. The method yields optimal Basis Function (BF) by FRFT with optimal transform angle. The TDCS using the proposed method has wider usable spectrum, stronger robustness and better ability of anti non-stationary jamming than using usual methods, such as Fourier Transform (FT), Auto Regressive (AR), Wavelet Transform (WT), etc. The main simulation results are as follows. First, the Bit Error Rate (BER) Pb is close to theoretical bound of no jamming no matter in single tone or in linear chirp interference. Second, the interference-to-signal ratio J /E is at least 12dB more than that of Direct Spread Spectrum System (DSSS) under the same BER if the spectrum hopping-to-signal ratio is 1:20 in chirp plus hopping interfering. Third, the Eb /N 0(when estimation difference is 90% between trans- mitter and receiver) is about 3.5dB or about 0.5dB (when estimation difference is 10% between transmitter and receiver) more than that of theoretical result when no estimation difference un-der Pb=10-2.
文摘Starting from the diffraction imaging process,we have discussed the relationship between optical imaging system and fractional Fourier transform, and proposed a specific system which can form an inverse amplified image of input function.
文摘By introducing a convenient complex form of the α-th 2-dimensional fractional Fourier transform (CFFT) operation we find that it possesses new eigenmodes which are two-mode Hermite polynomials. We prove the eigenvalues of propagation in quadratic graded-index medium over a definite distance are the same as the eigenvalues of the α-th CFFT, which means that our definition of the α-th CFFT is physically meaningful.
基金supported by the National Natural Science Foundation of China(Grant No.11304126)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20130532)+2 种基金the Natural Science Fund for Colleges and Universities in Jiangsu Province,China(Grant No.13KJB140003)the Postdoctoral Science Foundation of China(Grant No.2013M541608)the Postdoctoral Science Foundation of Jiangsu Province,China(Grant No.1202012B)
文摘By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hyperbolic function,i.e.,tan α → tanh α,sin α →〉 sinh α,we find the quantum mechanical fractional squeezing transformation(FrST) which satisfies additivity.By virtue of the integration technique within the ordered product of operators(IWOP) we derive the unitary operator responsible for the FrST,which is composite and is made of e^iπa+a/2 and exp[iα/2(a^2 +a^+2).The FrST may be implemented in combinations of quadratic nonlinear crystals with different phase mismatches.
基金supported by the Natural Science Foundation of China(11801108)the Natural Science Foundation of Guangdong Province(2021A1515010314)the Science and Technology Planning Project of Guangzhou City(202201010111)。
文摘This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.
基金Project supported by the Scientific Research Fund of Zhejiang Provincial Education Department of China
文摘This paper introduces Lorentz beams to describe certain laser sources that produce highly divergent fields.The fractional Fourier transform (FRFT) is applied to treat the propagation of Lorentz beams.Based on the definition of convolution and the convolution theorem of the Fourier transform,an analytical expression for a Lorentz beam passing through a FRFT system has been derived.By using the derived formula,the properties of a Lorentz beam in the FRFT plane are illustrated numerically.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60473141)the Natural Science Foundation of Liaoning Province of China (Grant No. 20062191)
文摘In this paper the relations between two spreads, between two group delays, and between one spread and one group delay in fractional Fourier transform (FRFT) domains, are presented and three theorems on the uncertainty principle in FRFT domains are also developed. Theorem 1 gives the bounds of two spreads in two FRFT domains. Theorem 2 shows the uncertainty relation between two group delays in two FRFT domains. Theorem 3 presents the crossed uncertainty relation between one group delay and one spread in two FRFT domains. The novelty of their results lies in connecting the products of different physical measures and giving their physical interpretations. The existing uncertainty principle in the FRFT domain is only a special ease of theorem 1, and the conventional uncertainty principle in time-frequency domains is a special case of their results. Therefore, three theorems develop the relations of two spreads in time-frequency domains into the relations between two spreads, between two group delays, and between one spread and one group delay in FRFT domains.
文摘A new method for the rejection of linear frequency modulation (LFM) interference in direct sequence spread spectrum (DSSS) system based on the fractional Fourier transform is proposed, and the configuration of the receiver with an interference exciser is also presented. Based on the property that the fractional Fourier transform of a signal is equivalent to rotating the signal in the time-frequency plane, the received signal is transform into a certain fractional Fourier domain, this transform will result in the least spectrum overlap between the signal and interference. Then, a narrowband filter is exploited to extract most of the interference energy. The performance analyses show that remarkable improvements in signal-to-noise ratio (SNR) and bit-error-ratio (BER) are obtained.