We discover a phenomenon of inhibition effect induced by fractional Gaussian noise in a neuronal system. Firstly,essential properties of fractional Brownian motion(fBm) and generation of fractional Gaussian noise(fGn)...We discover a phenomenon of inhibition effect induced by fractional Gaussian noise in a neuronal system. Firstly,essential properties of fractional Brownian motion(fBm) and generation of fractional Gaussian noise(fGn) are presented,and representative sample paths of fBm and corresponding spectral density of fGn are discussed at different Hurst indexes.Next, we consider the effect of fGn on neuronal firing, and observe that neuronal firing decreases first and then increases with increasing noise intensity and Hurst index of fGn by studying the time series evolution. To further quantify the inhibitory effect of fGn, by introducing the average discharge rate, we investigate the effects of noise and external current on neuronal firing, and find the occurrence of inhibitory effect about noise intensity and Hurst index of f Gn at a certain level of current. Moreover, the inhibition effect is not easy to occur when the noise intensity and Hurst index are too large or too small. In view of opposite action mechanism compared with stochastic resonance, this suppression phenomenon is called inverse stochastic resonance(ISR). Finally, the inhibitory effect induced by fGn is further verified based on the inter-spike intervals(ISIs) in the neuronal system. Our work lays a solid foundation for future study of non-Gaussian-type noise on neuronal systems.展开更多
This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Und...This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.展开更多
In this paper,we consider the strong convergence of the time-space fractional diffusion equation driven by fractional Gaussian noise with Hurst index H∈(1/2,1).A sharp regularity estimate of the mild solution and the...In this paper,we consider the strong convergence of the time-space fractional diffusion equation driven by fractional Gaussian noise with Hurst index H∈(1/2,1).A sharp regularity estimate of the mild solution and the numerical scheme constructed by finite element method for integral fractional Laplacian and backward Euler convolution quadrature for Riemann-Liouville time fractional derivative are proposed.With the help of inverse Laplace transform and fractional Ritz projection,we obtain the accurate error estimates in time and space.Finally,our theoretical results are accompanied by numerical experiments.展开更多
We studied the response of fractional-order van de Pol oscillator to Gaussian white noise excitation in this letter. An equivalent integral-order nonlinear stochastic system is obtained to replace the given system bas...We studied the response of fractional-order van de Pol oscillator to Gaussian white noise excitation in this letter. An equivalent integral-order nonlinear stochastic system is obtained to replace the given system based on the principle of minimum mean-square error. Through stochastic averaging, an averaged Ito equation is deduced. We obtained the Fokker–Planck–Kolmogorov equation connected to the averaged Ito equation and solved it to yield the approximate stationary response of the system. The analytical solution is confirmed by using Monte Carlo simulation.展开更多
A stochastic averaging method for predicting the response of quasi partially integrable and non-resonant Hamiltoniansystems to fractional Gaussian noise (fGla) with the Hurst index 1/2〈H〈l is proposed. The average...A stochastic averaging method for predicting the response of quasi partially integrable and non-resonant Hamiltoniansystems to fractional Gaussian noise (fGla) with the Hurst index 1/2〈H〈l is proposed. The averaged stochastic differential equa-tions (SDEs) for the first integrals of the associated Hamiltonian system are derived. The dimension of averaged SDEs is less thanthat of the original system. The stationary probability density and statistics of the original system are obtained approximately fromsolving the averaged SDEs numerically. Two systems are worked out to illustrate the proposed stochastic averaging method. It isshown that the results obtained by using the proposed stochastic averaging method and those from digital simulation of originalsystem agree well, and the computational time for the former results is less than that for the latter ones.展开更多
A stochastic averaging method of quasi integrable and resonant Hamiltonian systems under excitation of fractional Gaussian noise (fGn) with the Hurst index 1/2 〈 H 〈 1 is proposed. First, the definition and the ba...A stochastic averaging method of quasi integrable and resonant Hamiltonian systems under excitation of fractional Gaussian noise (fGn) with the Hurst index 1/2 〈 H 〈 1 is proposed. First, the definition and the basic property of fGn and related fractional Brownian motion (iBm) are briefly introduced. Then, the averaged fractional stochastic differential equations (SDEs) for the first integrals and combinations of angle variables of the associated Hamiltonian systems are derived. The stationary probability density and statistics of the original systems are then obtained approximately by simulating the averaged SDEs numerically. An example is worked out to illustrate the proposed stochastic averaging method. It is shown that the results obtained by using the proposed stochastic averaging method and those from digital simulation of original system agree well.展开更多
To model wave propagation in inhomogeneous media with frequency dependent power-law attenuation,it is needed to use the fractional powers of symmetric coercive elliptic operators in space and the Caputo tempered fract...To model wave propagation in inhomogeneous media with frequency dependent power-law attenuation,it is needed to use the fractional powers of symmetric coercive elliptic operators in space and the Caputo tempered fractional derivative in time.The model studied in this paper is semilinear stochastic space-time fractional wave equations driven by infinite dimensional multiplicative Gaussian noise and additive fractional Gaussian noise,because of the potential fluctuations of the external sources.The purpose of this work is to discuss the Galerkin finite element approximation for the semilinear stochastic fractional wave equation.First,the space-time multiplicative Gaussian noise and additive fractional Gaussian noise are discretized,which results in a regularized stochastic fractional wave equation while introducing a modeling error in the mean-square sense.We further present a complete regularity theory for the regularized equation.A standard finite element approximation is used for the spatial operator,and a mean-square priori estimates for the modeling error and the approximation error to the solution of the regularized problem are established.Finally,numerical experiments are performed to confirm the theoretical analysis.展开更多
This paper investigates the stochastic P-bifurcation(SPB)of a fractionally damped oscillator subjected to additive and multiplicative Gaussian white noise.Variable transformation and the stochastic averaging technique...This paper investigates the stochastic P-bifurcation(SPB)of a fractionally damped oscillator subjected to additive and multiplicative Gaussian white noise.Variable transformation and the stochastic averaging technique are applied to derive the expression of probability density function(PDF)of the system response.Critical conditions of the stochastic bifurcation induced by system parameters are presented based on the change in the number of extreme points of the probability density function.Numerical results are given to show the effectiveness of the proposed approach.Stochastic P-bifurcations for additive and multiplicative noise are studied in detail according to the critical conditions.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.11402157)Applied Basic Research Programs of Shanxi Province,China (Grant No.201901D111086)。
文摘We discover a phenomenon of inhibition effect induced by fractional Gaussian noise in a neuronal system. Firstly,essential properties of fractional Brownian motion(fBm) and generation of fractional Gaussian noise(fGn) are presented,and representative sample paths of fBm and corresponding spectral density of fGn are discussed at different Hurst indexes.Next, we consider the effect of fGn on neuronal firing, and observe that neuronal firing decreases first and then increases with increasing noise intensity and Hurst index of fGn by studying the time series evolution. To further quantify the inhibitory effect of fGn, by introducing the average discharge rate, we investigate the effects of noise and external current on neuronal firing, and find the occurrence of inhibitory effect about noise intensity and Hurst index of f Gn at a certain level of current. Moreover, the inhibition effect is not easy to occur when the noise intensity and Hurst index are too large or too small. In view of opposite action mechanism compared with stochastic resonance, this suppression phenomenon is called inverse stochastic resonance(ISR). Finally, the inhibitory effect induced by fGn is further verified based on the inter-spike intervals(ISIs) in the neuronal system. Our work lays a solid foundation for future study of non-Gaussian-type noise on neuronal systems.
基金supported by the Natural Science Foundation of China(11801108)the Natural Science Foundation of Guangdong Province(2021A1515010314)the Science and Technology Planning Project of Guangzhou City(202201010111)。
文摘This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.
基金supported by the National Natural Science Foundation of China(Grant Nos.12071195,12301509,12225107)by the Innovative Groups of Basic Research in Gansu Province(Grant No.22JR5RA391)+3 种基金by the Major Science and Technology Projects in Gansu Province-Leading Talents in Science and Technology(Grant No.23ZDKA0005)by the Science and Technology Plan of Gansu Province(Grant No.22JR5RA535)by the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2023-pd04)by the China Postdoctoral Science Foundation(Grant No.2023M731466).
文摘In this paper,we consider the strong convergence of the time-space fractional diffusion equation driven by fractional Gaussian noise with Hurst index H∈(1/2,1).A sharp regularity estimate of the mild solution and the numerical scheme constructed by finite element method for integral fractional Laplacian and backward Euler convolution quadrature for Riemann-Liouville time fractional derivative are proposed.With the help of inverse Laplace transform and fractional Ritz projection,we obtain the accurate error estimates in time and space.Finally,our theoretical results are accompanied by numerical experiments.
基金supported by the National Natural Science Foundation of China(10932009,11072212,11272279,and 11002059)the Specialized Research Fund for the Doctoral Program of Higher Education(20103501120003)the Fundamental Research Funds for Huaqiao University(JB-SJ1010)
文摘We studied the response of fractional-order van de Pol oscillator to Gaussian white noise excitation in this letter. An equivalent integral-order nonlinear stochastic system is obtained to replace the given system based on the principle of minimum mean-square error. Through stochastic averaging, an averaged Ito equation is deduced. We obtained the Fokker–Planck–Kolmogorov equation connected to the averaged Ito equation and solved it to yield the approximate stationary response of the system. The analytical solution is confirmed by using Monte Carlo simulation.
基金supported by the National Natural Science Foundation of China(Nos.11172259,11272279,11321202,and 11432012)
文摘A stochastic averaging method for predicting the response of quasi partially integrable and non-resonant Hamiltoniansystems to fractional Gaussian noise (fGla) with the Hurst index 1/2〈H〈l is proposed. The averaged stochastic differential equa-tions (SDEs) for the first integrals of the associated Hamiltonian system are derived. The dimension of averaged SDEs is less thanthat of the original system. The stationary probability density and statistics of the original system are obtained approximately fromsolving the averaged SDEs numerically. Two systems are worked out to illustrate the proposed stochastic averaging method. It isshown that the results obtained by using the proposed stochastic averaging method and those from digital simulation of originalsystem agree well, and the computational time for the former results is less than that for the latter ones.
基金supported by the National Natural Science Foundation of China under grants nos.:11272279,11321202 and 11432012
文摘A stochastic averaging method of quasi integrable and resonant Hamiltonian systems under excitation of fractional Gaussian noise (fGn) with the Hurst index 1/2 〈 H 〈 1 is proposed. First, the definition and the basic property of fGn and related fractional Brownian motion (iBm) are briefly introduced. Then, the averaged fractional stochastic differential equations (SDEs) for the first integrals and combinations of angle variables of the associated Hamiltonian systems are derived. The stationary probability density and statistics of the original systems are then obtained approximately by simulating the averaged SDEs numerically. An example is worked out to illustrate the proposed stochastic averaging method. It is shown that the results obtained by using the proposed stochastic averaging method and those from digital simulation of original system agree well.
基金supported by the National Natural Science Foundation of China(Grants No.41875084,11801452,12071195,12225107)the AI and Big Data Funds(Grant No.2019620005000775)+1 种基金the Innovative Groups of Basic Research in Gansu Province(Grant No.22JR5RA391)NSF of Gansu(Grant No.21JR7RA537).
文摘To model wave propagation in inhomogeneous media with frequency dependent power-law attenuation,it is needed to use the fractional powers of symmetric coercive elliptic operators in space and the Caputo tempered fractional derivative in time.The model studied in this paper is semilinear stochastic space-time fractional wave equations driven by infinite dimensional multiplicative Gaussian noise and additive fractional Gaussian noise,because of the potential fluctuations of the external sources.The purpose of this work is to discuss the Galerkin finite element approximation for the semilinear stochastic fractional wave equation.First,the space-time multiplicative Gaussian noise and additive fractional Gaussian noise are discretized,which results in a regularized stochastic fractional wave equation while introducing a modeling error in the mean-square sense.We further present a complete regularity theory for the regularized equation.A standard finite element approximation is used for the spatial operator,and a mean-square priori estimates for the modeling error and the approximation error to the solution of the regularized problem are established.Finally,numerical experiments are performed to confirm the theoretical analysis.
基金This work was supported by the National Natural Science Foundation of China(Grants 12002089,11902081 and 11872305).
文摘This paper investigates the stochastic P-bifurcation(SPB)of a fractionally damped oscillator subjected to additive and multiplicative Gaussian white noise.Variable transformation and the stochastic averaging technique are applied to derive the expression of probability density function(PDF)of the system response.Critical conditions of the stochastic bifurcation induced by system parameters are presented based on the change in the number of extreme points of the probability density function.Numerical results are given to show the effectiveness of the proposed approach.Stochastic P-bifurcations for additive and multiplicative noise are studied in detail according to the critical conditions.