期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multiplicity of Solutions for Fractional Hamiltonian Systems under Local Conditions
1
作者 Lili Wan 《Journal of Applied Mathematics and Physics》 2020年第8期1472-1486,共15页
Under some local superquadratic conditions on <em>W</em> (<em>t</em>, <em>u</em>) with respect to <em>u</em>, the existence of infinitely many solutions is obtained for ... Under some local superquadratic conditions on <em>W</em> (<em>t</em>, <em>u</em>) with respect to <em>u</em>, the existence of infinitely many solutions is obtained for the nonperiodic fractional Hamiltonian systems<img src="Edit_b2a2ac0a-6dde-474f-8c75-e9f5fc7b9918.bmp" alt="" />, where <em>L</em> (<em>t</em>) is unnecessarily coercive. 展开更多
关键词 fractional hamiltonian systems Local Conditions Variational Methods
下载PDF
Homoclinic Solutions for a Class of Perturbed Fractional Hamiltonian Systems with Subquadratic Conditions
2
作者 Ying LUO Fei GUO Yan LIU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第5期1177-1196,共20页
In this paper,we consider the following perturbed fractional Hamiltonian systems{tD_(∞)^(α)(_(-∞)D_(t)^(α)u(t))+L(t)u(t)=■_(u)W(t,u(t))+■(u)G(t,u(t)),t∈R,u∈H^(α)(R,R^(N)),whereα∈(1/2,1],L∈C(R,R^(N×N))... In this paper,we consider the following perturbed fractional Hamiltonian systems{tD_(∞)^(α)(_(-∞)D_(t)^(α)u(t))+L(t)u(t)=■_(u)W(t,u(t))+■(u)G(t,u(t)),t∈R,u∈H^(α)(R,R^(N)),whereα∈(1/2,1],L∈C(R,R^(N×N))is symmetric and not necessarily required to be positive definite,W∈C1(R×R^(N,R))is locally subquadratic and locally even near the origin,and perturbed term G∈C1(R×R^(N,R))maybe has no parity in u.Utilizing the perturbed method improved by the authors,a sequence of nontrivial homo clinic solutions is obtained,which generalizes previous results. 展开更多
关键词 Perturbed fractional hamiltonian systems subquadratic condition perturbed method homoclinic solutions MULTIPLICITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部