For an in-depth study on the symmetric properties for nonholonomic non-conservative mechanical systems,the fractional action-like Noether symmetries and conserved quantities for nonholonomic mechanical systems are stu...For an in-depth study on the symmetric properties for nonholonomic non-conservative mechanical systems,the fractional action-like Noether symmetries and conserved quantities for nonholonomic mechanical systems are studied,based on the fractional action-like approach for dynamics modeling proposed by El-Nabulsi.Firstly,the fractional action-like variational problem is established,and the fractional action-like Lagrange equations of holonomic system and the fractional action-like differential equations of motion with multiplier for nonholonomic system are given;secondly,according to the invariance of fractional action-like Hamilton action under infinitesimal transformations of group,the definitions and criteria of fractional action-like Noether symmetric transformations and quasi-symmetric transformations are put forward;finally,the fractional action-like Noether theorems for both holonomic system and nonholonomic system are established,and the relationship between the fractional action-like Noether symmetry and the conserved quantity is given.展开更多
In this paper, we investigate the space-time fractional symmetric regularized long wave equation. By using the Backlund transformations and nonlinear superposition formulas of solutions to Riccati equation, we present...In this paper, we investigate the space-time fractional symmetric regularized long wave equation. By using the Backlund transformations and nonlinear superposition formulas of solutions to Riccati equation, we present infinite sequence solutions for space-time fractional symmetric regularized long wave equation. This method can be extended to solve other nonlinear fractional partial differential equations.展开更多
基金supported by the National Natural Science Foundation of China(No.11272227)
文摘For an in-depth study on the symmetric properties for nonholonomic non-conservative mechanical systems,the fractional action-like Noether symmetries and conserved quantities for nonholonomic mechanical systems are studied,based on the fractional action-like approach for dynamics modeling proposed by El-Nabulsi.Firstly,the fractional action-like variational problem is established,and the fractional action-like Lagrange equations of holonomic system and the fractional action-like differential equations of motion with multiplier for nonholonomic system are given;secondly,according to the invariance of fractional action-like Hamilton action under infinitesimal transformations of group,the definitions and criteria of fractional action-like Noether symmetric transformations and quasi-symmetric transformations are put forward;finally,the fractional action-like Noether theorems for both holonomic system and nonholonomic system are established,and the relationship between the fractional action-like Noether symmetry and the conserved quantity is given.
基金Acknowledgments This work is supported by the National Natural Science Foundation of China (Grant No. 11462019) and the Scientific Research Foundation of Inner Mongolia University for Nationalities (Grant No. NMD1306). The author would like to thank the referees for their time and comments.
文摘In this paper, we investigate the space-time fractional symmetric regularized long wave equation. By using the Backlund transformations and nonlinear superposition formulas of solutions to Riccati equation, we present infinite sequence solutions for space-time fractional symmetric regularized long wave equation. This method can be extended to solve other nonlinear fractional partial differential equations.