Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests Lie group method for fractional partial differential equations. A time-fractional Burgers equation is ...Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests Lie group method for fractional partial differential equations. A time-fractional Burgers equation is used as an example to illustrate the effectiveness of the Lie group method and some classes of exact solutions are obtained.展开更多
A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media....A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media. Some techniques, such as the calculus of variations, energy analysis method, commutativity of the products of difference operators, decomposition of high-order difference operators and the theory of a priori estimates are introduced and an optimal order error estimates in l^2 norm is derived. This method has been applied successfully to the numerical simulation of enhanced oil production in actual oilfields, and the simulation results ate quite interesting and satisfactory.展开更多
For the section coupled system of multilayer dynamics of fluids in porous media, a parallel scheme modified by the characteristic finite difference fractional steps is proposed for a complete point set consisting of c...For the section coupled system of multilayer dynamics of fluids in porous media, a parallel scheme modified by the characteristic finite difference fractional steps is proposed for a complete point set consisting of coarse and fine partitions. Some tech- niques, such as calculus of variations, energy method, twofold-quadratic interpolation of product type, multiplicative commutation law of difference operators, decomposition of high order difference operators, and prior estimates, are used in theoretical analysis. Optimal order estimates in 12 norm are derived to show accuracy of the second order approximation solutions. These methods have been used to simulate the problems of migration-accumulation of oil resources.展开更多
A fractional step scheme with modified characteristic finite differences run- ning in a parallel arithmetic is presented to simulate a nonlinear percolation system of multilayer dynamics of fluids in a porous medium w...A fractional step scheme with modified characteristic finite differences run- ning in a parallel arithmetic is presented to simulate a nonlinear percolation system of multilayer dynamics of fluids in a porous medium with moving boundary values. With the help of theoretical techniques including the change of regions, piecewise threefold quadratic interpolation, calculus of variations, multiplicative commutation rule of differ- ence operators, multiplicative commutation rule of difference operators, decomposition of high order difference operators, induction hypothesis, and prior estimates, an optimal order in 12 norm is displayed to complete the convergence analysis of the numerical algo- rithm. Some numerical results arising in the actual simulation of migration-accumulation of oil resources by this method are listed in the last section.展开更多
The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The p...The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The pressure equation is a nonlinear parabolic equation, the concentration is defined by a convection-diffusion equation and the saturations of different components are stated by nonlinear convection-diffusion equations. The transport pressure appears in the concentration equation and saturation equations in the form of Darcy velocity, and controls their processes. The flow equation is solved by the conservative mixed volume element and the accuracy is improved one order for approximating Darcy velocity. The method of characteristic mixed volume element is applied to solve the concentration, where the diffusion is discretized by a mixed volume element method and the convection is treated by the method of characteristics. The characteristics can confirm strong computational stability at sharp fronts and it can avoid numerical dispersion and nonphysical oscillation. The scheme can adopt a large step while its numerical results have small time-truncation error and high order of accuracy. The mixed volume element method has the law of conservation on every element for the diffusion and it can obtain numerical solutions of the concentration and adjoint vectors. It is most important in numerical simulation to ensure the physical conservative nature. The saturation different components are obtained by the method of characteristic fractional step difference. The computational work is shortened greatly by decomposing a three-dimensional problem into three successive one-dimensional problems and it is completed easily by using the algorithm of speedup. Using the theory and technique of a priori estimates of differential equations, we derive an optimal second order estimates in 12 norm. Numerical examples are given to show the effectiveness and practicability and the method is testified as a powerful tool to solve the important problems.展开更多
The mathematical system is formulated by four partial differential equations combined with initial- boundary value conditions to describe transient behavior of three-dimensional semiconductor device with heat conducti...The mathematical system is formulated by four partial differential equations combined with initial- boundary value conditions to describe transient behavior of three-dimensional semiconductor device with heat conduction. The first equation of an elliptic type is defined with respect to the electric potential, the successive two equations of convection dominated diffusion type are given to define the electron concentration and the hole concentration, and the fourth equation of heat conductor is for the temperature. The electric potential appears in the equations of electron concentration, hole concentration and the temperature in the formation of the intensity. A mass conservative numerical approximation of the electric potential is presented by using the mixed finite volume element, and the accuracy of computation of the electric intensity is improved one order. The method of characteristic fractional step difference is applied to discretize the other three equations, where the hyperbolic terms are approximated by a difference quotient in the characteristics and the diffusion terms are discretized by the method of fractional step difference. The computation of three-dimensional problem works efficiently by dividing it into three one-dimensional subproblems and every subproblem is solved by the method of speedup in parallel. Using a pair of different grids (coarse partition and refined partition), piecewise threefold quadratic interpolation, variation theory, multiplicative commutation rule of differential operators, mathematical induction and priori estimates theory and special technique of differential equations, we derive an optimal second order estimate in L2-norm. This numerical method is valuable in the simulation of semiconductor device theoretically and actually, and gives a powerful tool to solve the international problem presented by J. Douglas, Jr.展开更多
文摘Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests Lie group method for fractional partial differential equations. A time-fractional Burgers equation is used as an example to illustrate the effectiveness of the Lie group method and some classes of exact solutions are obtained.
基金supported by the Major State Basic Research Development Program of China(G19990328)National Tackling Key Program(2011ZX05011-004+6 种基金2011ZX0505220050200069)National Natural Science Foundation of China(11101244112712311077112410372052)Doctorate Foundation of the Ministry of Education of China(20030422047)
文摘A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media. Some techniques, such as the calculus of variations, energy analysis method, commutativity of the products of difference operators, decomposition of high-order difference operators and the theory of a priori estimates are introduced and an optimal order error estimates in l^2 norm is derived. This method has been applied successfully to the numerical simulation of enhanced oil production in actual oilfields, and the simulation results ate quite interesting and satisfactory.
基金supported by the Major State Basic Research Program of China(No.19990328)the National Tackling Key Program(No.20050200069)+1 种基金the National Natural Science Foundation of China(Nos.10372052,10771124,11101244,and 11271231)the Doctorate Foundation of the State Education Commission(No.20030422047)
文摘For the section coupled system of multilayer dynamics of fluids in porous media, a parallel scheme modified by the characteristic finite difference fractional steps is proposed for a complete point set consisting of coarse and fine partitions. Some tech- niques, such as calculus of variations, energy method, twofold-quadratic interpolation of product type, multiplicative commutation law of difference operators, decomposition of high order difference operators, and prior estimates, are used in theoretical analysis. Optimal order estimates in 12 norm are derived to show accuracy of the second order approximation solutions. These methods have been used to simulate the problems of migration-accumulation of oil resources.
基金Project supported by the Major State Basic Research Program of China (No. 19990328)the National Tackling Key Problems Program (No. 20050200069)+4 种基金the National Natural Science Foundation of China (Nos. 10771124, 10372052, 11101244, and 11271231)the Doctorate Foundation of the Ministry of Education of China (No. 20030422047)the Shandong Province Natural Science Foundation (No. ZR2009AQ012)the Independent Innovation Foundation of Shandong University(No. 2010TS031)the Scientific Research Award Fund for Excellent Middle-Aged and Young Scientists of Shandong Province (No. BS2009NJ003)
文摘A fractional step scheme with modified characteristic finite differences run- ning in a parallel arithmetic is presented to simulate a nonlinear percolation system of multilayer dynamics of fluids in a porous medium with moving boundary values. With the help of theoretical techniques including the change of regions, piecewise threefold quadratic interpolation, calculus of variations, multiplicative commutation rule of differ- ence operators, multiplicative commutation rule of difference operators, decomposition of high order difference operators, induction hypothesis, and prior estimates, an optimal order in 12 norm is displayed to complete the convergence analysis of the numerical algo- rithm. Some numerical results arising in the actual simulation of migration-accumulation of oil resources by this method are listed in the last section.
基金Supported by the National Natural Science Foundation of China(11101124 and 11271231)Natural Science Foundation of Shandong Province(ZR2016AM08)National Tackling Key Problems Program(2011ZX05052,2011ZX05011-004)
文摘The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The pressure equation is a nonlinear parabolic equation, the concentration is defined by a convection-diffusion equation and the saturations of different components are stated by nonlinear convection-diffusion equations. The transport pressure appears in the concentration equation and saturation equations in the form of Darcy velocity, and controls their processes. The flow equation is solved by the conservative mixed volume element and the accuracy is improved one order for approximating Darcy velocity. The method of characteristic mixed volume element is applied to solve the concentration, where the diffusion is discretized by a mixed volume element method and the convection is treated by the method of characteristics. The characteristics can confirm strong computational stability at sharp fronts and it can avoid numerical dispersion and nonphysical oscillation. The scheme can adopt a large step while its numerical results have small time-truncation error and high order of accuracy. The mixed volume element method has the law of conservation on every element for the diffusion and it can obtain numerical solutions of the concentration and adjoint vectors. It is most important in numerical simulation to ensure the physical conservative nature. The saturation different components are obtained by the method of characteristic fractional step difference. The computational work is shortened greatly by decomposing a three-dimensional problem into three successive one-dimensional problems and it is completed easily by using the algorithm of speedup. Using the theory and technique of a priori estimates of differential equations, we derive an optimal second order estimates in 12 norm. Numerical examples are given to show the effectiveness and practicability and the method is testified as a powerful tool to solve the important problems.
基金supported by the National Natural Science Foundation of China(Grant Nos.11101124 and 11271231)the National Tackling Key Problems Program for Science and Technology(Grant No.20050200069)the Doctorate Foundation of the Ministry of Education of China(Grant No.20030422047)
文摘The mathematical system is formulated by four partial differential equations combined with initial- boundary value conditions to describe transient behavior of three-dimensional semiconductor device with heat conduction. The first equation of an elliptic type is defined with respect to the electric potential, the successive two equations of convection dominated diffusion type are given to define the electron concentration and the hole concentration, and the fourth equation of heat conductor is for the temperature. The electric potential appears in the equations of electron concentration, hole concentration and the temperature in the formation of the intensity. A mass conservative numerical approximation of the electric potential is presented by using the mixed finite volume element, and the accuracy of computation of the electric intensity is improved one order. The method of characteristic fractional step difference is applied to discretize the other three equations, where the hyperbolic terms are approximated by a difference quotient in the characteristics and the diffusion terms are discretized by the method of fractional step difference. The computation of three-dimensional problem works efficiently by dividing it into three one-dimensional subproblems and every subproblem is solved by the method of speedup in parallel. Using a pair of different grids (coarse partition and refined partition), piecewise threefold quadratic interpolation, variation theory, multiplicative commutation rule of differential operators, mathematical induction and priori estimates theory and special technique of differential equations, we derive an optimal second order estimate in L2-norm. This numerical method is valuable in the simulation of semiconductor device theoretically and actually, and gives a powerful tool to solve the international problem presented by J. Douglas, Jr.