In this paper,a new design method for digital infinite impulse response(IIR)filters with nearly linear-phase response is presented using fractional derivative constraints(FDCs).In the proposed method,design problem of...In this paper,a new design method for digital infinite impulse response(IIR)filters with nearly linear-phase response is presented using fractional derivative constraints(FDCs).In the proposed method,design problem of an IIR frlter is constructed as the minimization of phase error between the desired and designed phase response of an allpass filter(APF)such that the designed lowpass filter(LPF)or highpass frlter(HPF)yields less passband(ep),and stopband errors(es)with optimal stopband attenuation(As).In order to have accurate passband(pb)response,FDCs are imposed on appropriate reference frequency,where the optimality of these FDCs are ensured by using a new greedy based sorting mechanism.The simulated results reflect the efficiency of the proposed method in term of improved passband response along with better transition width.However,small reduction in^is observed within the allowable limit,when compared to noin-fractional design approach,but the designed filter remains immune to wordlength(WL)effect.展开更多
Noether theorems for two fractional singular systems are discussed.One system involves mixed integer and Caputo fractional derivatives,and the other involves only Caputo fractional derivatives.Firstly,the fractional p...Noether theorems for two fractional singular systems are discussed.One system involves mixed integer and Caputo fractional derivatives,and the other involves only Caputo fractional derivatives.Firstly,the fractional primary constraints and the fractional constrained Hamilton equations are given.Then,the fractional Noether theorems of the two fractional singular systems are established,including the fractional Noether identities,the fractional Noether quasi-identities and the fractional conserved quantities.Finally,the results obtained are illustrated by two examples.展开更多
文摘In this paper,a new design method for digital infinite impulse response(IIR)filters with nearly linear-phase response is presented using fractional derivative constraints(FDCs).In the proposed method,design problem of an IIR frlter is constructed as the minimization of phase error between the desired and designed phase response of an allpass filter(APF)such that the designed lowpass filter(LPF)or highpass frlter(HPF)yields less passband(ep),and stopband errors(es)with optimal stopband attenuation(As).In order to have accurate passband(pb)response,FDCs are imposed on appropriate reference frequency,where the optimality of these FDCs are ensured by using a new greedy based sorting mechanism.The simulated results reflect the efficiency of the proposed method in term of improved passband response along with better transition width.However,small reduction in^is observed within the allowable limit,when compared to noin-fractional design approach,but the designed filter remains immune to wordlength(WL)effect.
基金Supported by the National Natural Science Foundation of China(12172241,12002228,12272248,11972241)Qing Lan Project of Colleges and Universities in Jiangsu Province
文摘Noether theorems for two fractional singular systems are discussed.One system involves mixed integer and Caputo fractional derivatives,and the other involves only Caputo fractional derivatives.Firstly,the fractional primary constraints and the fractional constrained Hamilton equations are given.Then,the fractional Noether theorems of the two fractional singular systems are established,including the fractional Noether identities,the fractional Noether quasi-identities and the fractional conserved quantities.Finally,the results obtained are illustrated by two examples.