The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicat...The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicate the corresponding relationship.展开更多
The present paper investigates the fractal structure of fractional integrals of Weierstrass functions. The exact box dimension for such functions many important cases is established. We need to point out that, althoug...The present paper investigates the fractal structure of fractional integrals of Weierstrass functions. The exact box dimension for such functions many important cases is established. We need to point out that, although the result itself achieved in the present paper is interesting, the new technique and method should be emphasized. These novel ideas might be useful to establish the box dimension or Hausdorff dimension (especially for the lower bounds) for more general groups of functions.展开更多
Fractional integral of continuous functions has been discussed in the present paper. If the order of Riemann-Liouville fractional integral is v, fractal dimension of Riemann-Liouville fractional integral of any contin...Fractional integral of continuous functions has been discussed in the present paper. If the order of Riemann-Liouville fractional integral is v, fractal dimension of Riemann-Liouville fractional integral of any continuous functions on a closed interval is no more than 2 - v.展开更多
This paper investigates the fractal dimension of the fractional integrals of a fractal function. It has been proved that there exists some linear connection between the order of Riemann-Liouvile fractional integrals a...This paper investigates the fractal dimension of the fractional integrals of a fractal function. It has been proved that there exists some linear connection between the order of Riemann-Liouvile fractional integrals and the Hausdorff dimension of a fractal function.展开更多
We know that the Box dimension of f(x) ∈ C^1[0,1] is 1. In this paper, we prove that the Box dimension of continuous functions with bounded variation is still 1. Furthermore, Box dimension of Weyl fractional integr...We know that the Box dimension of f(x) ∈ C^1[0,1] is 1. In this paper, we prove that the Box dimension of continuous functions with bounded variation is still 1. Furthermore, Box dimension of Weyl fractional integral of above function is also 1.展开更多
Given n≥2 and α≥1/2,we obtained an improved upbound of Hausdorff's dimension of the fractional Schrodinger operator;that is,supf∈H^(s)(R^(n)) dim_(H){x∈R^(n):limt→0 e^(it)(-△)^(α) f(x)≠f(x)}≤n+1-2(n+1)s/...Given n≥2 and α≥1/2,we obtained an improved upbound of Hausdorff's dimension of the fractional Schrodinger operator;that is,supf∈H^(s)(R^(n)) dim_(H){x∈R^(n):limt→0 e^(it)(-△)^(α) f(x)≠f(x)}≤n+1-2(n+1)s/n for n/2(n+1)<s≤n/2.展开更多
The idea of fractional dimension was stated in brief firstly.Then,adopting the fractional statistical similar principle, the method of the least square minimum error was applied to evaluate the fractional dimension of...The idea of fractional dimension was stated in brief firstly.Then,adopting the fractional statistical similar principle, the method of the least square minimum error was applied to evaluate the fractional dimension of per image pixel depending on the fractional property of image.And the image edge is extracted by magnitude of fractional dimension of image pixel.We presented the algorithm of the local fractional dimension,which made the rule of window size and sentencing the fractional dimension of edge.Although this algorithm was waste time,it is better than the classical ones in extraction edge and anti-jamming.展开更多
The stable problem of rotor system, seen in many fields, has been cared for more. Nowadays the reasons of most losing stability are caused by nonlinear behaviors This presents higher requirements to the designing of m...The stable problem of rotor system, seen in many fields, has been cared for more. Nowadays the reasons of most losing stability are caused by nonlinear behaviors This presents higher requirements to the designing of motor system : considering nonlinear elements, avoiding the unstable parameter points or regions where nonlinear phenomena will be presented. If a family of time series of the unknown nonlinear dynamical system cart only be got ( may be polluted by noise), how to identify the change of motive properties at different parameters? In this paper, through the study of Jeffcott rotor system, the result that using the figures between the fractional dimension of rime-serial and parameter can be gained, and the critical bifurcated parameters of bearing-rotor dynamical system can be identified.展开更多
The problem of investigating the minimum set of landmarks consisting of auto-machines(Robots)in a connected network is studied with the concept of location number ormetric dimension of this network.In this paper,we st...The problem of investigating the minimum set of landmarks consisting of auto-machines(Robots)in a connected network is studied with the concept of location number ormetric dimension of this network.In this paper,we study the latest type of metric dimension called as local fractional metric dimension(LFMD)and find its upper bounds for generalized Petersen networks GP(n,3),where n≥7.For n≥9.The limiting values of LFMD for GP(n,3)are also obtained as 1(bounded)if n approaches to infinity.展开更多
In this paper,we obtain the fractal dimension of the graph of the Weierstrass function, its derivative of the fractional order and the relation between the dimension and the order of the fractional derivative.
Stochastic fractional differential systems are important and useful in the mathematics,physics,and engineering fields.However,the determination of their probabilistic responses is difficult due to their non-Markovian ...Stochastic fractional differential systems are important and useful in the mathematics,physics,and engineering fields.However,the determination of their probabilistic responses is difficult due to their non-Markovian property.The recently developed globally-evolving-based generalized density evolution equation(GE-GDEE),which is a unified partial differential equation(PDE)governing the transient probability density function(PDF)of a generic path-continuous process,including non-Markovian ones,provides a feasible tool to solve this problem.In the paper,the GE-GDEE for multi-dimensional linear fractional differential systems subject to Gaussian white noise is established.In particular,it is proved that in the GE-GDEE corresponding to the state-quantities of interest,the intrinsic drift coefficient is a time-varying linear function,and can be analytically determined.In this sense,an alternative low-dimensional equivalent linear integer-order differential system with exact closed-form coefficients for the original highdimensional linear fractional differential system can be constructed such that their transient PDFs are identical.Specifically,for a multi-dimensional linear fractional differential system,if only one or two quantities are of interest,GE-GDEE is only in one or two dimensions,and the surrogate system would be a one-or two-dimensional linear integer-order system.Several examples are studied to assess the merit of the proposed method.Though presently the closed-form intrinsic drift coefficient is only available for linear stochastic fractional differential systems,the findings in the present paper provide a remarkable demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional system itself is non-Markovian,and provide insights for the physical-mechanism-informed determination of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems.展开更多
This paper discusses further the roughness of Riemann-Liouville fractional integral on an arbitrary fractal continuous functions that follows Rfs. [1]. A novel method is used to reach a similar result for an arbitrary...This paper discusses further the roughness of Riemann-Liouville fractional integral on an arbitrary fractal continuous functions that follows Rfs. [1]. A novel method is used to reach a similar result for an arbitrary fractal function , where is the Riemann-Liouville fractional integral. Furthermore, a general resultis arrived at for 1-dimensional fractal functions such as with unbounded variation and(or) infinite lengths, which can infer all previous studies such as [2] [3]. This paper’s estimation reveals that the fractional integral does not increase the fractal dimension of f(x), i.e. fractional integration does not increase at least the fractal roughness. And the result has partly answered the fractal calculus conjecture and completely answered this conjecture for all 1-dimensional fractal function (Xiao has not answered). It is significant with a comparison to the past researches that the box dimension connection between a fractal function and its Riemann-Liouville integral has been carried out only for Weierstrass type and Besicovitch type functions, and at most Hlder continuous. Here the proof technique for Riemann-Liouville fractional integral is possibly of methodology to other fractional integrals.展开更多
Let X (t)(t∈R^N) be a d-dimensional fractional Brownian motion. A contiunous function f:R^N→R^d is called a polar function of X(t)(t∈R^N) if P{ t∈R^N\{0},X(t)=t(t)}=0. In this paper, the characteristies of the cla...Let X (t)(t∈R^N) be a d-dimensional fractional Brownian motion. A contiunous function f:R^N→R^d is called a polar function of X(t)(t∈R^N) if P{ t∈R^N\{0},X(t)=t(t)}=0. In this paper, the characteristies of the class of polar functions are studied. Our theorem 1 improves the previous results of Graversen and Legall. Theorem2 solves a problem of Legall (1987) on Brownian motion.展开更多
Based on the combination of fractional calculus with fractal functions, a new type of functions is introduced; the definition, graph, property and dimension of this function are discussed.
Let B^H={B^H(t),t∈R^N+}be a real-valued(N,d)fractional Brownian sheet with Hurst index H=(H1,…,HN).The characteristics of the polar functions for B^H are discussed.The relationship between the class of contin...Let B^H={B^H(t),t∈R^N+}be a real-valued(N,d)fractional Brownian sheet with Hurst index H=(H1,…,HN).The characteristics of the polar functions for B^H are discussed.The relationship between the class of continuous functions satisfying Lipschitz condition and the class of polar-functions of B^H is obtained.The Hausdorff dimension about the fixed points and the inequality about the Kolmogorov’s entropy index for B^H are presented.Furthermore,it is proved that any two independent fractional Brownian sheets are nonintersecting in some conditions.A problem proposed by LeGall about the existence of no-polar continuous functions satisfying the Holder condition is also solved.展开更多
文摘The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicate the corresponding relationship.
文摘The present paper investigates the fractal structure of fractional integrals of Weierstrass functions. The exact box dimension for such functions many important cases is established. We need to point out that, although the result itself achieved in the present paper is interesting, the new technique and method should be emphasized. These novel ideas might be useful to establish the box dimension or Hausdorff dimension (especially for the lower bounds) for more general groups of functions.
文摘Fractional integral of continuous functions has been discussed in the present paper. If the order of Riemann-Liouville fractional integral is v, fractal dimension of Riemann-Liouville fractional integral of any continuous functions on a closed interval is no more than 2 - v.
文摘This paper investigates the fractal dimension of the fractional integrals of a fractal function. It has been proved that there exists some linear connection between the order of Riemann-Liouvile fractional integrals and the Hausdorff dimension of a fractal function.
文摘We know that the Box dimension of f(x) ∈ C^1[0,1] is 1. In this paper, we prove that the Box dimension of continuous functions with bounded variation is still 1. Furthermore, Box dimension of Weyl fractional integral of above function is also 1.
基金Li Dan and Li Junfeng were supported by NSFC-DFG(11761131002)NSFC(12071052)Xiao Jie was supported by NSERC of Canada(202979463102000).
文摘Given n≥2 and α≥1/2,we obtained an improved upbound of Hausdorff's dimension of the fractional Schrodinger operator;that is,supf∈H^(s)(R^(n)) dim_(H){x∈R^(n):limt→0 e^(it)(-△)^(α) f(x)≠f(x)}≤n+1-2(n+1)s/n for n/2(n+1)<s≤n/2.
文摘The idea of fractional dimension was stated in brief firstly.Then,adopting the fractional statistical similar principle, the method of the least square minimum error was applied to evaluate the fractional dimension of per image pixel depending on the fractional property of image.And the image edge is extracted by magnitude of fractional dimension of image pixel.We presented the algorithm of the local fractional dimension,which made the rule of window size and sentencing the fractional dimension of edge.Although this algorithm was waste time,it is better than the classical ones in extraction edge and anti-jamming.
文摘The stable problem of rotor system, seen in many fields, has been cared for more. Nowadays the reasons of most losing stability are caused by nonlinear behaviors This presents higher requirements to the designing of motor system : considering nonlinear elements, avoiding the unstable parameter points or regions where nonlinear phenomena will be presented. If a family of time series of the unknown nonlinear dynamical system cart only be got ( may be polluted by noise), how to identify the change of motive properties at different parameters? In this paper, through the study of Jeffcott rotor system, the result that using the figures between the fractional dimension of rime-serial and parameter can be gained, and the critical bifurcated parameters of bearing-rotor dynamical system can be identified.
基金funded by the Deanship of Scientific Research at Jouf University under Grant No.DSR-2021-03-0301supported by the Higher Education Commission of Pakistan through the National Research Program for Universities Grant No.20-16188/NRPU/R&D/HEC/20212021.
文摘The problem of investigating the minimum set of landmarks consisting of auto-machines(Robots)in a connected network is studied with the concept of location number ormetric dimension of this network.In this paper,we study the latest type of metric dimension called as local fractional metric dimension(LFMD)and find its upper bounds for generalized Petersen networks GP(n,3),where n≥7.For n≥9.The limiting values of LFMD for GP(n,3)are also obtained as 1(bounded)if n approaches to infinity.
基金Project supported by National Natural Science Foundation of China.
文摘In this paper,we obtain the fractal dimension of the graph of the Weierstrass function, its derivative of the fractional order and the relation between the dimension and the order of the fractional derivative.
基金The supports of the National Natural Science Foundation of China(Grant Nos.51725804 and U1711264)the Research Fund for State Key Laboratories of Ministry of Science and Technology of China(SLDRCE19-B-23)the Shanghai Post-Doctoral Excellence Program(2022558)。
文摘Stochastic fractional differential systems are important and useful in the mathematics,physics,and engineering fields.However,the determination of their probabilistic responses is difficult due to their non-Markovian property.The recently developed globally-evolving-based generalized density evolution equation(GE-GDEE),which is a unified partial differential equation(PDE)governing the transient probability density function(PDF)of a generic path-continuous process,including non-Markovian ones,provides a feasible tool to solve this problem.In the paper,the GE-GDEE for multi-dimensional linear fractional differential systems subject to Gaussian white noise is established.In particular,it is proved that in the GE-GDEE corresponding to the state-quantities of interest,the intrinsic drift coefficient is a time-varying linear function,and can be analytically determined.In this sense,an alternative low-dimensional equivalent linear integer-order differential system with exact closed-form coefficients for the original highdimensional linear fractional differential system can be constructed such that their transient PDFs are identical.Specifically,for a multi-dimensional linear fractional differential system,if only one or two quantities are of interest,GE-GDEE is only in one or two dimensions,and the surrogate system would be a one-or two-dimensional linear integer-order system.Several examples are studied to assess the merit of the proposed method.Though presently the closed-form intrinsic drift coefficient is only available for linear stochastic fractional differential systems,the findings in the present paper provide a remarkable demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional system itself is non-Markovian,and provide insights for the physical-mechanism-informed determination of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems.
文摘This paper discusses further the roughness of Riemann-Liouville fractional integral on an arbitrary fractal continuous functions that follows Rfs. [1]. A novel method is used to reach a similar result for an arbitrary fractal function , where is the Riemann-Liouville fractional integral. Furthermore, a general resultis arrived at for 1-dimensional fractal functions such as with unbounded variation and(or) infinite lengths, which can infer all previous studies such as [2] [3]. This paper’s estimation reveals that the fractional integral does not increase the fractal dimension of f(x), i.e. fractional integration does not increase at least the fractal roughness. And the result has partly answered the fractal calculus conjecture and completely answered this conjecture for all 1-dimensional fractal function (Xiao has not answered). It is significant with a comparison to the past researches that the box dimension connection between a fractal function and its Riemann-Liouville integral has been carried out only for Weierstrass type and Besicovitch type functions, and at most Hlder continuous. Here the proof technique for Riemann-Liouville fractional integral is possibly of methodology to other fractional integrals.
文摘Let X (t)(t∈R^N) be a d-dimensional fractional Brownian motion. A contiunous function f:R^N→R^d is called a polar function of X(t)(t∈R^N) if P{ t∈R^N\{0},X(t)=t(t)}=0. In this paper, the characteristies of the class of polar functions are studied. Our theorem 1 improves the previous results of Graversen and Legall. Theorem2 solves a problem of Legall (1987) on Brownian motion.
基金National Natural Science Foundation of Zhejiang Province
文摘Based on the combination of fractional calculus with fractal functions, a new type of functions is introduced; the definition, graph, property and dimension of this function are discussed.
基金the Key Research Base for Humanities and Social Sciences of Zhejiang Provincial High Education Talents(Statistics of Zhejiang Gongshang University)the Natural ScienceFoundation of Shaanxi Province(2005A08,2006A14)
文摘Let B^H={B^H(t),t∈R^N+}be a real-valued(N,d)fractional Brownian sheet with Hurst index H=(H1,…,HN).The characteristics of the polar functions for B^H are discussed.The relationship between the class of continuous functions satisfying Lipschitz condition and the class of polar-functions of B^H is obtained.The Hausdorff dimension about the fixed points and the inequality about the Kolmogorov’s entropy index for B^H are presented.Furthermore,it is proved that any two independent fractional Brownian sheets are nonintersecting in some conditions.A problem proposed by LeGall about the existence of no-polar continuous functions satisfying the Holder condition is also solved.