In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution...In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution by applying some well-known fixed point theorems. An example is given to illustrate the effectiveness of our result.展开更多
In this paper,we establish sufficient conditions for the existence of positive solutions to a general class of integral boundary value problem(BVP) of nonlinear fractional functional differential equation.A differenti...In this paper,we establish sufficient conditions for the existence of positive solutions to a general class of integral boundary value problem(BVP) of nonlinear fractional functional differential equation.A differential operator is taken in the RiemannLiouville sense.Our analysis relies on the Krasnosel’skii fixed-point theorem in cones.We also give examples to illustrate the applicability of our results.展开更多
Iterative root problem can be regarded as a weak version of the problem of embedding a homeomorphism into a flow. There are many results on iterative roots of monotone functions. However, this problem gets more diffcu...Iterative root problem can be regarded as a weak version of the problem of embedding a homeomorphism into a flow. There are many results on iterative roots of monotone functions. However, this problem gets more diffcult in non-monotone cases. Therefore, it is interesting to find iterative roots of linear fractional functions (abbreviated as LFFs), a class of non-monotone functions on ?. In this paper, iterative roots of LFFs are studied on ?. An equivalence between the iterative functional equation for non-constant LFFs and the matrix equation is given. By means of a method of finding matrix roots, general formulae of all meromorphic iterative roots of LFFs are obtained and the precise number of roots is also determined in various cases. As applications, we present all meromorphic iterative roots for functions z and 1/z.展开更多
In this paper, using the contracting mapping principle and the monotone iterative method, we consider the existence of solution to the initial value problem of fractional functional differential equations with Riemann...In this paper, using the contracting mapping principle and the monotone iterative method, we consider the existence of solution to the initial value problem of fractional functional differential equations with Riemann-Liouville derivative.展开更多
In this paper it has been systematically studied the imbedding properties o f fractional integral operators of periodic functions of several variables,and isomorphic properties of fractional intregral operators in the...In this paper it has been systematically studied the imbedding properties o f fractional integral operators of periodic functions of several variables,and isomorphic properties of fractional intregral operators in the spaces of Lipschitz continuous functions. It has also been proved that the space of fractional integration,the space of Lipschitz continuous functions and the Sobolev space are identical in L^2-norm.Results obtainedhere are not true for fractional integrals(or Riesz potentials)in R^n.展开更多
The classical example of no-where differentiable but everywhere continuous function is Weierstrass function. In this paper we have defined fractional order Weierstrass function in terms of Jumarie fractional trigonome...The classical example of no-where differentiable but everywhere continuous function is Weierstrass function. In this paper we have defined fractional order Weierstrass function in terms of Jumarie fractional trigonometric functions. The H?lder exponent and Box dimension of this new function have been evaluated here. It has been established that the values of H?lder exponent and Box dimension of this fractional order Weierstrass function are the same as in the original Weierstrass function. This new development in generalizing the classical Weierstrass function by use of fractional trigonometric function analysis and fractional derivative of fractional Weierstrass function by Jumarie fractional derivative, establishes that roughness indices are invariant to this generalization.展开更多
In the present case,we propose the novel generalized fractional integral operator describing Mittag-Leffler function in their kernel with respect to another function Φ.The proposed technique is to use graceful amalga...In the present case,we propose the novel generalized fractional integral operator describing Mittag-Leffler function in their kernel with respect to another function Φ.The proposed technique is to use graceful amalgamations of the Riemann-Liouville(RL)fractional integral operator and several other fractional operators.Meanwhile,several generalizations are considered in order to demonstrate the novel variants involving a family of positive functions n(n∈N)for the proposed fractional operator.In order to confirm and demonstrate the proficiency of the characterized strategy,we analyze existing fractional integral operators in terms of classical fractional order.Meanwhile,some special cases are apprehended and the new outcomes are also illustrated.The obtained consequences illuminate that future research is easy to implement,profoundly efficient,viable,and exceptionally precise in its investigation of the behavior of non-linear differential equations of fractional order that emerge in the associated areas of science and engineering.展开更多
In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fra...In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.展开更多
In the article we consider the fractional maximal operator Mα, 0 ≤α 〈 Q on any Carnot group G (i.e., nilpotent stratified Lie group) in the generalized Morrey spaces Mp,φ(G), where Q is the homogeneous dimens...In the article we consider the fractional maximal operator Mα, 0 ≤α 〈 Q on any Carnot group G (i.e., nilpotent stratified Lie group) in the generalized Morrey spaces Mp,φ(G), where Q is the homogeneous dimension of G. We find the conditions on the pair (φ1, φ2) which ensures the boundedness of the operator Ms from one generalized Morrey space Mp,φ1 (G) to another Mq,φ2 (G), 1. 〈 p ≤q 〈 ∞. 1/p - 1/q = α/Q, and from the space M1,φ1 (G) to the weak space Wq,φ2 (G), 1 〈 q 〈 ∞, 1 - 1/q = α/Q. Also find conditions on the φ which ensure the Adams type boundedness of the Ms from M α (G) from Mp,φ^1/p(G)to Mq,φ^1/q(G) for 1 〈p〈q〈∞ and fromM1,φ(G) toWMq,φ^1/q(G)for 1〈q〈∞. In the case b ∈ BMO(G) and 1 〈 p 〈 q 〈 ∞, find the sufficient conditions on the pair (φ1, φ2) which ensures the boundedness of the kth-order commutator operator Mb,α,k from Mp,φ1 (G) to Mq,φ2(G) with 1/p - 1/q = α/Q. Also find the sufficient conditions on the φ which ensures the boundedness of the operator Mb,α,k from Mp,φ^1/p(G) tom Mp,φ^1/p (G) for 1 〈p〈q〈∞. In all the cases the conditions for the boundedness of Mα are given it terms of supremaltype inequalities on (φ1, φ2) and φ , which do not assume any assumption on monotonicity of (φ1, φ2) and φ in r. As applications we consider the SchrSdinger operator -△G + V on G, where the nonnegative potential V belongs to the reverse Holder class B∞(G). The MB,φ1 - Mq,φ2 estimates for the operators V^γ(-△G + V)^-β and V^γ△↓G(-△G + V)^-β are obtained.展开更多
For 0 〈 α 〈 mn and nonnegative integers n ≥ 2, m≥ 1, the multilinear fractional integral is defined bywhere →y= (y1, Y2,…, ym) and 7 denotes the m-tuple (f1, f2,…, fm). In this note, the one- weighted and ...For 0 〈 α 〈 mn and nonnegative integers n ≥ 2, m≥ 1, the multilinear fractional integral is defined bywhere →y= (y1, Y2,…, ym) and 7 denotes the m-tuple (f1, f2,…, fm). In this note, the one- weighted and two-weighted boundedness on Lp (JRn) space for multilinear fractional integral operator I(am) and the fractional multi-sublinear maximal operator Mα(m) are established re- spectively. The authors also obtain two-weighted weak type estimate for the operator Mα(m).展开更多
We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bif...We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bifurcation diagrams,the largest Lyapunov exponent plot,and the phase portraits are derived,respectively.Finally,with the secret keys generated by Menezes-Vanstone elliptic curve cryptosystem,we apply the discrete fractional map into color image encryption.After that,the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms.展开更多
Fractional calculus and special functions have contributed a lot to mathematical physics and its various branches. The great use of mathematical physics in distinguished astrophysical problems has attracted astronomer...Fractional calculus and special functions have contributed a lot to mathematical physics and its various branches. The great use of mathematical physics in distinguished astrophysical problems has attracted astronomers and physicists to pay more attention to available mathematical tools that can be widely used in solving several problems of astrophysics/physics. In view of the great importance and usefulness of kinetic equations in certain astrophysical problems, the authors derive a generalized fractional kinetic equation involving the Lorenzo-Hartley function, a generalized function for fractional calculus. The fractional kinetic equation discussed here can be used to investigate a wide class of known (and possibly also new) fractional kinetic equations, hitherto scattered in the literature. A compact and easily computable solution is established in terms of the Lorenzo-Hartley function. Special cases, involving the generalized Mittag-Leffler function and the R-function, are considered. The obtained results imply the known results more precisely.展开更多
The science of strategy(game theory)is known as the optimal decision-making of autonomous and challenging players in a strategic background.There are different strategies to complete the optimal decision.One of these ...The science of strategy(game theory)is known as the optimal decision-making of autonomous and challenging players in a strategic background.There are different strategies to complete the optimal decision.One of these strategies is the similarity technique.Similarity technique is a generalization of the symmetric strategy,which depends only on the other approaches employed,which can be formulated by altering diversities.One of these methods is the fractal theory.In this investigation,we present a new method studying the similarity analytic solution(SAS)of a 3D-fractal nanofluid system(FNFS).The dynamic evolution is completely given by the concept of differential subordination and majorization.Subordination andmajorization relationships are the sets of observable individualities.Game theory can simplify the conditions under which particular sets combine.We offer an explicit construction for the complex possible velocity,energy and thermal functions of two-dimensional fluid flow(the complex variable is suggested in the open unit disk,where the disk is selected at a constant temperature and concentration with uniform velocity).We establish that whenever the 3D-fractal nanofluid systemis approximated by a fractal function,the solution has the same property,so a class of fractal tangent function gives SAS.Finally,we demonstrate some simulations and examples that give the consequences of this methodology.展开更多
In this study,a new algorithm of fractional beta chaotic maps is proposed to generate chaotic sequences for image encryption.The proposed technique generates multi random sequences by shuffling the image pixel positio...In this study,a new algorithm of fractional beta chaotic maps is proposed to generate chaotic sequences for image encryption.The proposed technique generates multi random sequences by shuffling the image pixel position.This technique is used to blur the pixels connecting the input and encrypted images and to increase the attack resistance.The proposed algorithm makes the encryption process sophisticated by using fractional chaotic maps,which hold the properties of pseudo-randomness.The fractional beta sequences are utilized to alter the image pixels to decryption attacks.The experimental results proved that the proposed image encryption algorithm successfully encrypted and decrypted the images with the same keys.The output findings indicate that our proposed algorithm has good entropy and low correlation coefficients.This translates to enhanced security against different attacks.A MATLAB programming tool was used to implement and assess the image quality measures.A comparison with other image encryption techniques regarding the visual inspection and signal-to-noise ratio is provided.展开更多
The Kapchinsky Vladimirsky(K-V)beam through a hackle periodic-focusing magnetic field is studiedusing the particle-core model.The beam halo-chaos is found,and an idea of fraction power-law function controller ispropos...The Kapchinsky Vladimirsky(K-V)beam through a hackle periodic-focusing magnetic field is studiedusing the particle-core model.The beam halo-chaos is found,and an idea of fraction power-law function controller isproposed based on the mechanism of halo formation and the strategy of controlling halo-chaos.The method is appliedto the multi-particle simulation to control the halo.The numerical results show that the halo-chaos and its regenerationcan be eliminated effectively by using the fraction power-law function control method.At the same time,the radialparticle density is uniform at the beam's center as long as the control method and appropriate parameter are chosen.展开更多
This paper gives the necessary condition and one sufficient condition of the quasimonotonic function, and proves that the linear fractional function is quasi-monotone.
In this paper,we use the analytic semigroup theory of linear operators and fixed point method to prove the existence of mild solutions to a semilinear fractional order functional differential equations in a Banach space.
In this short note, we show that it is more natural to look the fractional Brownian motion as functionals of the standard white noises, and the fractional white noise calculus developed by Hu and Фksendal follows dir...In this short note, we show that it is more natural to look the fractional Brownian motion as functionals of the standard white noises, and the fractional white noise calculus developed by Hu and Фksendal follows directly from the classical white noise functional calculus. As examples we prove that the fractional Girsanov formula, the Ito type integrals and the fractional Black-Scholes formula are easy consequences of their classical counterparts. An extension to the fractional Brownian sheet is also briefly discussed.展开更多
A class of fractional stochastic neutral functional differential equation is analyzed in this paper.With the utilization of the fractional calculations,semigroup theory,fixed point technique and stochastic analysis th...A class of fractional stochastic neutral functional differential equation is analyzed in this paper.With the utilization of the fractional calculations,semigroup theory,fixed point technique and stochastic analysis theory,a sufficient condition of the existence for p-mean almost periodic solution is obtained,which are supported by two examples.展开更多
A stencil-like volume of fluid (VOF) method is proposed for tracking free interface. A stencil on a grid cell is worked out according to the normal direction of the interface, in which only three interface positions...A stencil-like volume of fluid (VOF) method is proposed for tracking free interface. A stencil on a grid cell is worked out according to the normal direction of the interface, in which only three interface positions are possible in 2D cases, and the interface can be reconstructed by only requiring the known local volume fraction information. On the other hand, the fluid-occupying-length is defined on each side of the stencil, through which a unified fluid-occupying volume model and a unified algorithm can be obtained to solve the interface advection equation. The method is suitable for the arbitrary geometry of the grid cell, and is extendible to 3D cases. Typical numerical examples show that the current method can give "sharp" results for tracking free interface.展开更多
基金Supported by the NNSF of China(ll071001) Supported by the NSF" of the Anhui Higher Education Institutions of China(KJ2013B276) Supporied by the Key Program of the Natural Science Foundation for the Excellent Youth Scholars of Anhui Higher Education Institutions of China (2013SQRL142ZD)
文摘In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution by applying some well-known fixed point theorems. An example is given to illustrate the effectiveness of our result.
基金Supported by the Natural Science Foundation of Guangdong Province(10151063101000003)
文摘In this paper,we establish sufficient conditions for the existence of positive solutions to a general class of integral boundary value problem(BVP) of nonlinear fractional functional differential equation.A differential operator is taken in the RiemannLiouville sense.Our analysis relies on the Krasnosel’skii fixed-point theorem in cones.We also give examples to illustrate the applicability of our results.
基金supported by the Youth Fund of Sichuan Provincial Education Department of China (Grant No.07ZB042)
文摘Iterative root problem can be regarded as a weak version of the problem of embedding a homeomorphism into a flow. There are many results on iterative roots of monotone functions. However, this problem gets more diffcult in non-monotone cases. Therefore, it is interesting to find iterative roots of linear fractional functions (abbreviated as LFFs), a class of non-monotone functions on ?. In this paper, iterative roots of LFFs are studied on ?. An equivalence between the iterative functional equation for non-constant LFFs and the matrix equation is given. By means of a method of finding matrix roots, general formulae of all meromorphic iterative roots of LFFs are obtained and the precise number of roots is also determined in various cases. As applications, we present all meromorphic iterative roots for functions z and 1/z.
基金supported by the NNSF of China(Nos.11301260,61304161 and 11201216)the NSF of Jiangxi Province(Nos.20132BAB211003 and 20132BAB211037)the YFED of Jiangxi Province(No.GJJ13078)
文摘In this paper, using the contracting mapping principle and the monotone iterative method, we consider the existence of solution to the initial value problem of fractional functional differential equations with Riemann-Liouville derivative.
文摘In this paper it has been systematically studied the imbedding properties o f fractional integral operators of periodic functions of several variables,and isomorphic properties of fractional intregral operators in the spaces of Lipschitz continuous functions. It has also been proved that the space of fractional integration,the space of Lipschitz continuous functions and the Sobolev space are identical in L^2-norm.Results obtainedhere are not true for fractional integrals(or Riesz potentials)in R^n.
基金Board of Research in Nuclear Science (BRNS), Department of Atomic Energy Government of India
文摘The classical example of no-where differentiable but everywhere continuous function is Weierstrass function. In this paper we have defined fractional order Weierstrass function in terms of Jumarie fractional trigonometric functions. The H?lder exponent and Box dimension of this new function have been evaluated here. It has been established that the values of H?lder exponent and Box dimension of this fractional order Weierstrass function are the same as in the original Weierstrass function. This new development in generalizing the classical Weierstrass function by use of fractional trigonometric function analysis and fractional derivative of fractional Weierstrass function by Jumarie fractional derivative, establishes that roughness indices are invariant to this generalization.
基金supported by the National Natural Science Foundation of China(Grant No.61673169).
文摘In the present case,we propose the novel generalized fractional integral operator describing Mittag-Leffler function in their kernel with respect to another function Φ.The proposed technique is to use graceful amalgamations of the Riemann-Liouville(RL)fractional integral operator and several other fractional operators.Meanwhile,several generalizations are considered in order to demonstrate the novel variants involving a family of positive functions n(n∈N)for the proposed fractional operator.In order to confirm and demonstrate the proficiency of the characterized strategy,we analyze existing fractional integral operators in terms of classical fractional order.Meanwhile,some special cases are apprehended and the new outcomes are also illustrated.The obtained consequences illuminate that future research is easy to implement,profoundly efficient,viable,and exceptionally precise in its investigation of the behavior of non-linear differential equations of fractional order that emerge in the associated areas of science and engineering.
基金Supported by the Research Fund for the Doctoral Program of High Education of China(20094407110001)Supported by the NSF of Guangdong Province(10151063101000003)
文摘In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.
基金partially supported by the grant of Ahi Evran University Scientific Research Projects(FEN 4001.12.0018)partially supported by the grant of Ahi Evran University Scientific Research Projects(FEN 4001.12.0019)+1 种基金by the grant of Science Development Foundation under the President of the Republic of Azerbaijan project EIF-2010-1(1)-40/06-1partially supported by the Scientific and Technological Research Council of Turkey(TUBITAK Project No:110T695)
文摘In the article we consider the fractional maximal operator Mα, 0 ≤α 〈 Q on any Carnot group G (i.e., nilpotent stratified Lie group) in the generalized Morrey spaces Mp,φ(G), where Q is the homogeneous dimension of G. We find the conditions on the pair (φ1, φ2) which ensures the boundedness of the operator Ms from one generalized Morrey space Mp,φ1 (G) to another Mq,φ2 (G), 1. 〈 p ≤q 〈 ∞. 1/p - 1/q = α/Q, and from the space M1,φ1 (G) to the weak space Wq,φ2 (G), 1 〈 q 〈 ∞, 1 - 1/q = α/Q. Also find conditions on the φ which ensure the Adams type boundedness of the Ms from M α (G) from Mp,φ^1/p(G)to Mq,φ^1/q(G) for 1 〈p〈q〈∞ and fromM1,φ(G) toWMq,φ^1/q(G)for 1〈q〈∞. In the case b ∈ BMO(G) and 1 〈 p 〈 q 〈 ∞, find the sufficient conditions on the pair (φ1, φ2) which ensures the boundedness of the kth-order commutator operator Mb,α,k from Mp,φ1 (G) to Mq,φ2(G) with 1/p - 1/q = α/Q. Also find the sufficient conditions on the φ which ensures the boundedness of the operator Mb,α,k from Mp,φ^1/p(G) tom Mp,φ^1/p (G) for 1 〈p〈q〈∞. In all the cases the conditions for the boundedness of Mα are given it terms of supremaltype inequalities on (φ1, φ2) and φ , which do not assume any assumption on monotonicity of (φ1, φ2) and φ in r. As applications we consider the SchrSdinger operator -△G + V on G, where the nonnegative potential V belongs to the reverse Holder class B∞(G). The MB,φ1 - Mq,φ2 estimates for the operators V^γ(-△G + V)^-β and V^γ△↓G(-△G + V)^-β are obtained.
基金the NNSF of China under Grant#10771110NSF of Ningbo City under Grant#2006A610090
文摘For 0 〈 α 〈 mn and nonnegative integers n ≥ 2, m≥ 1, the multilinear fractional integral is defined bywhere →y= (y1, Y2,…, ym) and 7 denotes the m-tuple (f1, f2,…, fm). In this note, the one- weighted and two-weighted boundedness on Lp (JRn) space for multilinear fractional integral operator I(am) and the fractional multi-sublinear maximal operator Mα(m) are established re- spectively. The authors also obtain two-weighted weak type estimate for the operator Mα(m).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61072147 and 11271008)
文摘We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bifurcation diagrams,the largest Lyapunov exponent plot,and the phase portraits are derived,respectively.Finally,with the secret keys generated by Menezes-Vanstone elliptic curve cryptosystem,we apply the discrete fractional map into color image encryption.After that,the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms.
文摘Fractional calculus and special functions have contributed a lot to mathematical physics and its various branches. The great use of mathematical physics in distinguished astrophysical problems has attracted astronomers and physicists to pay more attention to available mathematical tools that can be widely used in solving several problems of astrophysics/physics. In view of the great importance and usefulness of kinetic equations in certain astrophysical problems, the authors derive a generalized fractional kinetic equation involving the Lorenzo-Hartley function, a generalized function for fractional calculus. The fractional kinetic equation discussed here can be used to investigate a wide class of known (and possibly also new) fractional kinetic equations, hitherto scattered in the literature. A compact and easily computable solution is established in terms of the Lorenzo-Hartley function. Special cases, involving the generalized Mittag-Leffler function and the R-function, are considered. The obtained results imply the known results more precisely.
文摘The science of strategy(game theory)is known as the optimal decision-making of autonomous and challenging players in a strategic background.There are different strategies to complete the optimal decision.One of these strategies is the similarity technique.Similarity technique is a generalization of the symmetric strategy,which depends only on the other approaches employed,which can be formulated by altering diversities.One of these methods is the fractal theory.In this investigation,we present a new method studying the similarity analytic solution(SAS)of a 3D-fractal nanofluid system(FNFS).The dynamic evolution is completely given by the concept of differential subordination and majorization.Subordination andmajorization relationships are the sets of observable individualities.Game theory can simplify the conditions under which particular sets combine.We offer an explicit construction for the complex possible velocity,energy and thermal functions of two-dimensional fluid flow(the complex variable is suggested in the open unit disk,where the disk is selected at a constant temperature and concentration with uniform velocity).We establish that whenever the 3D-fractal nanofluid systemis approximated by a fractal function,the solution has the same property,so a class of fractal tangent function gives SAS.Finally,we demonstrate some simulations and examples that give the consequences of this methodology.
文摘In this study,a new algorithm of fractional beta chaotic maps is proposed to generate chaotic sequences for image encryption.The proposed technique generates multi random sequences by shuffling the image pixel position.This technique is used to blur the pixels connecting the input and encrypted images and to increase the attack resistance.The proposed algorithm makes the encryption process sophisticated by using fractional chaotic maps,which hold the properties of pseudo-randomness.The fractional beta sequences are utilized to alter the image pixels to decryption attacks.The experimental results proved that the proposed image encryption algorithm successfully encrypted and decrypted the images with the same keys.The output findings indicate that our proposed algorithm has good entropy and low correlation coefficients.This translates to enhanced security against different attacks.A MATLAB programming tool was used to implement and assess the image quality measures.A comparison with other image encryption techniques regarding the visual inspection and signal-to-noise ratio is provided.
基金National Natural Science Foundation of China under Crant No.10247005the Natural Science Foundation of the Anhui Higher Education Institutions of China under Grant No.KJ2007B187the Scientific Research Foundation of China University Of Mining and Technology for the Young under Grant No.OK060119
文摘The Kapchinsky Vladimirsky(K-V)beam through a hackle periodic-focusing magnetic field is studiedusing the particle-core model.The beam halo-chaos is found,and an idea of fraction power-law function controller isproposed based on the mechanism of halo formation and the strategy of controlling halo-chaos.The method is appliedto the multi-particle simulation to control the halo.The numerical results show that the halo-chaos and its regenerationcan be eliminated effectively by using the fraction power-law function control method.At the same time,the radialparticle density is uniform at the beam's center as long as the control method and appropriate parameter are chosen.
文摘This paper gives the necessary condition and one sufficient condition of the quasimonotonic function, and proves that the linear fractional function is quasi-monotone.
基金supported by the National Natural Science Foundation of China (No.11071001)the Natural Science Foundation of Huangshan University (No.2010xkj014)the Foundation of Education Department of Anhui Province (KJ2011B167)
文摘In this paper,we use the analytic semigroup theory of linear operators and fixed point method to prove the existence of mild solutions to a semilinear fractional order functional differential equations in a Banach space.
文摘In this short note, we show that it is more natural to look the fractional Brownian motion as functionals of the standard white noises, and the fractional white noise calculus developed by Hu and Фksendal follows directly from the classical white noise functional calculus. As examples we prove that the fractional Girsanov formula, the Ito type integrals and the fractional Black-Scholes formula are easy consequences of their classical counterparts. An extension to the fractional Brownian sheet is also briefly discussed.
基金by the National Natural Science Foundation of China(Nos.11871162,11661050,11561059).
文摘A class of fractional stochastic neutral functional differential equation is analyzed in this paper.With the utilization of the fractional calculations,semigroup theory,fixed point technique and stochastic analysis theory,a sufficient condition of the existence for p-mean almost periodic solution is obtained,which are supported by two examples.
基金Project supported by the National Natural Science Foundation of China (No.10672097)Shanghai Leading Academic Discipline Project (No.Y0103)
文摘A stencil-like volume of fluid (VOF) method is proposed for tracking free interface. A stencil on a grid cell is worked out according to the normal direction of the interface, in which only three interface positions are possible in 2D cases, and the interface can be reconstructed by only requiring the known local volume fraction information. On the other hand, the fluid-occupying-length is defined on each side of the stencil, through which a unified fluid-occupying volume model and a unified algorithm can be obtained to solve the interface advection equation. The method is suitable for the arbitrary geometry of the grid cell, and is extendible to 3D cases. Typical numerical examples show that the current method can give "sharp" results for tracking free interface.