In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution...In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution by applying some well-known fixed point theorems. An example is given to illustrate the effectiveness of our result.展开更多
In this paper,we establish sufficient conditions for the existence of positive solutions to a general class of integral boundary value problem(BVP) of nonlinear fractional functional differential equation.A differenti...In this paper,we establish sufficient conditions for the existence of positive solutions to a general class of integral boundary value problem(BVP) of nonlinear fractional functional differential equation.A differential operator is taken in the RiemannLiouville sense.Our analysis relies on the Krasnosel’skii fixed-point theorem in cones.We also give examples to illustrate the applicability of our results.展开更多
In this paper, using the contracting mapping principle and the monotone iterative method, we consider the existence of solution to the initial value problem of fractional functional differential equations with Riemann...In this paper, using the contracting mapping principle and the monotone iterative method, we consider the existence of solution to the initial value problem of fractional functional differential equations with Riemann-Liouville derivative.展开更多
Fractional calculus and special functions have contributed a lot to mathematical physics and its various branches. The great use of mathematical physics in distinguished astrophysical problems has attracted astronomer...Fractional calculus and special functions have contributed a lot to mathematical physics and its various branches. The great use of mathematical physics in distinguished astrophysical problems has attracted astronomers and physicists to pay more attention to available mathematical tools that can be widely used in solving several problems of astrophysics/physics. In view of the great importance and usefulness of kinetic equations in certain astrophysical problems, the authors derive a generalized fractional kinetic equation involving the Lorenzo-Hartley function, a generalized function for fractional calculus. The fractional kinetic equation discussed here can be used to investigate a wide class of known (and possibly also new) fractional kinetic equations, hitherto scattered in the literature. A compact and easily computable solution is established in terms of the Lorenzo-Hartley function. Special cases, involving the generalized Mittag-Leffler function and the R-function, are considered. The obtained results imply the known results more precisely.展开更多
In this paper,we use the analytic semigroup theory of linear operators and fixed point method to prove the existence of mild solutions to a semilinear fractional order functional differential equations in a Banach space.
A class of fractional stochastic neutral functional differential equation is analyzed in this paper.With the utilization of the fractional calculations,semigroup theory,fixed point technique and stochastic analysis th...A class of fractional stochastic neutral functional differential equation is analyzed in this paper.With the utilization of the fractional calculations,semigroup theory,fixed point technique and stochastic analysis theory,a sufficient condition of the existence for p-mean almost periodic solution is obtained,which are supported by two examples.展开更多
In one space-and in one time -dimension a beam-like equation is solved, where the second time derivative is replaced by the α- fractional time derivative, 1 〈 α ≤ 2. The solution is given in closed form in terms o...In one space-and in one time -dimension a beam-like equation is solved, where the second time derivative is replaced by the α- fractional time derivative, 1 〈 α ≤ 2. The solution is given in closed form in terms of the Mttag-Leffler functions in two parameters.展开更多
基金Supported by the NNSF of China(ll071001) Supported by the NSF" of the Anhui Higher Education Institutions of China(KJ2013B276) Supporied by the Key Program of the Natural Science Foundation for the Excellent Youth Scholars of Anhui Higher Education Institutions of China (2013SQRL142ZD)
文摘In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution by applying some well-known fixed point theorems. An example is given to illustrate the effectiveness of our result.
基金Supported by the Natural Science Foundation of Guangdong Province(10151063101000003)
文摘In this paper,we establish sufficient conditions for the existence of positive solutions to a general class of integral boundary value problem(BVP) of nonlinear fractional functional differential equation.A differential operator is taken in the RiemannLiouville sense.Our analysis relies on the Krasnosel’skii fixed-point theorem in cones.We also give examples to illustrate the applicability of our results.
基金supported by the NNSF of China(Nos.11301260,61304161 and 11201216)the NSF of Jiangxi Province(Nos.20132BAB211003 and 20132BAB211037)the YFED of Jiangxi Province(No.GJJ13078)
文摘In this paper, using the contracting mapping principle and the monotone iterative method, we consider the existence of solution to the initial value problem of fractional functional differential equations with Riemann-Liouville derivative.
文摘Fractional calculus and special functions have contributed a lot to mathematical physics and its various branches. The great use of mathematical physics in distinguished astrophysical problems has attracted astronomers and physicists to pay more attention to available mathematical tools that can be widely used in solving several problems of astrophysics/physics. In view of the great importance and usefulness of kinetic equations in certain astrophysical problems, the authors derive a generalized fractional kinetic equation involving the Lorenzo-Hartley function, a generalized function for fractional calculus. The fractional kinetic equation discussed here can be used to investigate a wide class of known (and possibly also new) fractional kinetic equations, hitherto scattered in the literature. A compact and easily computable solution is established in terms of the Lorenzo-Hartley function. Special cases, involving the generalized Mittag-Leffler function and the R-function, are considered. The obtained results imply the known results more precisely.
基金supported by the National Natural Science Foundation of China (No.11071001)the Natural Science Foundation of Huangshan University (No.2010xkj014)the Foundation of Education Department of Anhui Province (KJ2011B167)
文摘In this paper,we use the analytic semigroup theory of linear operators and fixed point method to prove the existence of mild solutions to a semilinear fractional order functional differential equations in a Banach space.
基金by the National Natural Science Foundation of China(Nos.11871162,11661050,11561059).
文摘A class of fractional stochastic neutral functional differential equation is analyzed in this paper.With the utilization of the fractional calculations,semigroup theory,fixed point technique and stochastic analysis theory,a sufficient condition of the existence for p-mean almost periodic solution is obtained,which are supported by two examples.
基金Supported by the Natural Science Foundation of Fujian Province(2001J009, Z0511015)the fund of Fuzhou University.
文摘In one space-and in one time -dimension a beam-like equation is solved, where the second time derivative is replaced by the α- fractional time derivative, 1 〈 α ≤ 2. The solution is given in closed form in terms of the Mttag-Leffler functions in two parameters.