期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
THE SPARSE REPRESENTATION RELATED WITH FRACTIONAL HEAT EQUATIONS
1
作者 曲伟 钱涛 +1 位作者 梁应德 李澎涛 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期567-582,共16页
This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli an... This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre(generalized Poisson equation).As a first step,the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence,and,as a second step,makes use of the semigroup or the reproducing kernel property of each of the expanding entries.Experiments show the effectiveness and efficiency of the proposed series solutions. 展开更多
关键词 reproducing kernel Hilbert space DICTIONARY sparse representation approximation to the identity fractional heat equations
下载PDF
Analytical solution for the time-fractional heat conduction equation in spherical coordinate system by the method of variable separation 被引量:2
2
作者 Ting-Hui Ning Xiao-Yun Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期994-1000,共7页
In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve ... In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 〈 α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative. 展开更多
关键词 fractional Fourier law fractional heat conduction equation - Spherical coordinate system - The separation of variables Mittag-Leffler function
下载PDF
HITTING PROBABILITIES AND INTERSECTIONS OF TIME-SPACE ANISOTROPIC RANDOM FIELDS 被引量:1
3
作者 Jun WANG Zhenlong CHEN 《Acta Mathematica Scientia》 SCIE CSCD 2022年第2期653-670,共18页
Let X^(H)={X^(H)(s),s∈R^(N_(1))}and X^(K)={X^(K)(t),t∈R^(N_(2))}be two independent time-space anisotropic random fields with indices H∈(0,1)^(N_(1)) and K∈(0,1)^(N_(2)),which may not possess Gaussianity,and which ... Let X^(H)={X^(H)(s),s∈R^(N_(1))}and X^(K)={X^(K)(t),t∈R^(N_(2))}be two independent time-space anisotropic random fields with indices H∈(0,1)^(N_(1)) and K∈(0,1)^(N_(2)),which may not possess Gaussianity,and which take values in R^(d) with a space metric τ.Under certain general conditions with density functions defined on a bounded interval,we study problems regarding the hitting probabilities of time-space anisotropic random fields and the existence of intersections of the sample paths of random fields X^(H) and X^(K).More generally,for any Borel set F⊂R^(d),the conditions required for F to contain intersection points of X^(H) and X^(K) are established.As an application,we give an example of an anisotropic non-Gaussian random field to show that these results are applicable to the solutions of non-linear systems of stochastic fractional heat equations. 展开更多
关键词 Hitting probability multiple intersection anisotropic random field capacity Hausdorff dimension stochastic fractional heat equations
下载PDF
On Well-Posedness of 2D Dissipative Quasi-Geostrophic Equation in Critical Mixed Norm Lebesgue Spaces
4
作者 Tuoc Phan Yannick Sire 《Analysis in Theory and Applications》 CSCD 2020年第2期111-127,共17页
We establish local and global well-posedness of the 2D dissipative quasigeostrophic equation in critical mixed norm Lebesgue spaces.The result demonstrates the persistence of the anisotropic behavior of the initial da... We establish local and global well-posedness of the 2D dissipative quasigeostrophic equation in critical mixed norm Lebesgue spaces.The result demonstrates the persistence of the anisotropic behavior of the initial data under the evolution of the 2D dissipative quasi-geostrophic equation.The phenomenon is a priori nontrivial due to the nonlocal structure of the equation.Our approach is based on Kato’s method using Picard’s interation,which can be apdated to the multi-dimensional case and other nonlinear non-local equations.We develop time decay estimates for solutions of fractional heat equation in mixed norm Lebesgue spaces that could be useful for other problems. 展开更多
关键词 Local well-posedness global well-posedness dissipative quasi-geostrophic equation fractional heat equation mixed-norm Lebesgue spaces
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部