This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli an...This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre(generalized Poisson equation).As a first step,the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence,and,as a second step,makes use of the semigroup or the reproducing kernel property of each of the expanding entries.Experiments show the effectiveness and efficiency of the proposed series solutions.展开更多
In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve ...In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 〈 α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative.展开更多
Let X^(H)={X^(H)(s),s∈R^(N_(1))}and X^(K)={X^(K)(t),t∈R^(N_(2))}be two independent time-space anisotropic random fields with indices H∈(0,1)^(N_(1)) and K∈(0,1)^(N_(2)),which may not possess Gaussianity,and which ...Let X^(H)={X^(H)(s),s∈R^(N_(1))}and X^(K)={X^(K)(t),t∈R^(N_(2))}be two independent time-space anisotropic random fields with indices H∈(0,1)^(N_(1)) and K∈(0,1)^(N_(2)),which may not possess Gaussianity,and which take values in R^(d) with a space metric τ.Under certain general conditions with density functions defined on a bounded interval,we study problems regarding the hitting probabilities of time-space anisotropic random fields and the existence of intersections of the sample paths of random fields X^(H) and X^(K).More generally,for any Borel set F⊂R^(d),the conditions required for F to contain intersection points of X^(H) and X^(K) are established.As an application,we give an example of an anisotropic non-Gaussian random field to show that these results are applicable to the solutions of non-linear systems of stochastic fractional heat equations.展开更多
We establish local and global well-posedness of the 2D dissipative quasigeostrophic equation in critical mixed norm Lebesgue spaces.The result demonstrates the persistence of the anisotropic behavior of the initial da...We establish local and global well-posedness of the 2D dissipative quasigeostrophic equation in critical mixed norm Lebesgue spaces.The result demonstrates the persistence of the anisotropic behavior of the initial data under the evolution of the 2D dissipative quasi-geostrophic equation.The phenomenon is a priori nontrivial due to the nonlocal structure of the equation.Our approach is based on Kato’s method using Picard’s interation,which can be apdated to the multi-dimensional case and other nonlinear non-local equations.We develop time decay estimates for solutions of fractional heat equation in mixed norm Lebesgue spaces that could be useful for other problems.展开更多
基金supported by the Science and Technology Development Fund of Macao SAR(FDCT0128/2022/A,0020/2023/RIB1,0111/2023/AFJ,005/2022/ALC)the Shandong Natural Science Foundation of China(ZR2020MA004)+2 种基金the National Natural Science Foundation of China(12071272)the MYRG 2018-00168-FSTZhejiang Provincial Natural Science Foundation of China(LQ23A010014).
文摘This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre(generalized Poisson equation).As a first step,the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence,and,as a second step,makes use of the semigroup or the reproducing kernel property of each of the expanding entries.Experiments show the effectiveness and efficiency of the proposed series solutions.
基金supported by the National Natural Science Foundation of China(11072134 and 11102102)
文摘In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 〈 α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative.
基金supported by National NaturalScience Foundation of China(11971432)Natural Science Foundation of Zhejiang Province(LY21G010003)+1 种基金First Class Discipline of Zhejiang-A(Zhejiang Gongshang University-Statistics)the Natural Science Foundation of Chuzhou University(zrjz2019012)。
文摘Let X^(H)={X^(H)(s),s∈R^(N_(1))}and X^(K)={X^(K)(t),t∈R^(N_(2))}be two independent time-space anisotropic random fields with indices H∈(0,1)^(N_(1)) and K∈(0,1)^(N_(2)),which may not possess Gaussianity,and which take values in R^(d) with a space metric τ.Under certain general conditions with density functions defined on a bounded interval,we study problems regarding the hitting probabilities of time-space anisotropic random fields and the existence of intersections of the sample paths of random fields X^(H) and X^(K).More generally,for any Borel set F⊂R^(d),the conditions required for F to contain intersection points of X^(H) and X^(K) are established.As an application,we give an example of an anisotropic non-Gaussian random field to show that these results are applicable to the solutions of non-linear systems of stochastic fractional heat equations.
基金supported by the Simons Foundation,grant#354889。
文摘We establish local and global well-posedness of the 2D dissipative quasigeostrophic equation in critical mixed norm Lebesgue spaces.The result demonstrates the persistence of the anisotropic behavior of the initial data under the evolution of the 2D dissipative quasi-geostrophic equation.The phenomenon is a priori nontrivial due to the nonlocal structure of the equation.Our approach is based on Kato’s method using Picard’s interation,which can be apdated to the multi-dimensional case and other nonlinear non-local equations.We develop time decay estimates for solutions of fractional heat equation in mixed norm Lebesgue spaces that could be useful for other problems.