This article deals with a new fractional nonlinear delay evolution system driven by a hemi-variational inequality in a Banach space.Utilizing the KKM theorem,a result concerned with the upper semicontinuity and measur...This article deals with a new fractional nonlinear delay evolution system driven by a hemi-variational inequality in a Banach space.Utilizing the KKM theorem,a result concerned with the upper semicontinuity and measurability of the solution set of a hemivariational inequality is established.By using a fixed point theorem for a condensing setvalued map,the nonemptiness and compactness of the set of mild solutions are also obtained for such a system under mild conditions.Finally,an example is presented to illustrate our main results.展开更多
The goal of the present paper is to investigate an abstract system, called fractional differential variational inequality, which consists of a mixed variational inequality combined with a fractional evolution equation...The goal of the present paper is to investigate an abstract system, called fractional differential variational inequality, which consists of a mixed variational inequality combined with a fractional evolution equation in the framework of Banach spaces. Using discrete approximation approach, an existence theorem of solutions for the inequality is established under some suitable assumptions.展开更多
In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional ...In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional differential equations.展开更多
In this paper we study the existence of nontrivial solutions to the well-known Brezis–Nirenberg problem involving the fractional p-Laplace operator in unbounded cylinder type domains.By means of the fractional Poinca...In this paper we study the existence of nontrivial solutions to the well-known Brezis–Nirenberg problem involving the fractional p-Laplace operator in unbounded cylinder type domains.By means of the fractional Poincaréinequality in unbounded cylindrical domains,we first study the asymptotic property of the first eigenvalueλp,s(ωδ)with respect to the domainωδ.Then,by applying the concentration-compactness principle for fractional Sobolev spaces in unbounded domains,we prove the existence results.The present work complements the results of Mosconi–Perera–Squassina–Yang[The Brezis–Nirenberg problem for the fractional p-Laplacian.C alc.Var.Partial Differential Equations,55(4),25 pp.2016]to unbounded domains and extends the classical Brezis–Nirenberg type results of Ramos–Wang–Willem[Positive solutions for elliptic equations with critical growth in unbounded domains.In:Chapman Hall/CRC Press,Boca Raton,2000,192–199]to the fractional p-Laplacian setting.展开更多
A linearized transformed L1 Galerkin finite element method(FEM)is presented for numerically solving the multi-dimensional time fractional Schr¨odinger equations.Unconditionally optimal error estimates of the full...A linearized transformed L1 Galerkin finite element method(FEM)is presented for numerically solving the multi-dimensional time fractional Schr¨odinger equations.Unconditionally optimal error estimates of the fully-discrete scheme are proved.Such error estimates are obtained by combining a new discrete fractional Gr¨onwall inequality,the corresponding Sobolev embedding theorems and some inverse inequalities.While the previous unconditional convergence results are usually obtained by using the temporal-spatial error spitting approaches.Numerical examples are presented to confirm the theoretical results.展开更多
We present Alikhanov linearized Galerkin methods for solving the nonlinear time fractional Schrödinger equations.Unconditionally optimal estimates of the fully-discrete scheme are obtained by using the fractional...We present Alikhanov linearized Galerkin methods for solving the nonlinear time fractional Schrödinger equations.Unconditionally optimal estimates of the fully-discrete scheme are obtained by using the fractional time-spatial splitting argument.The convergence results indicate that the error estimates hold without any spatial-temporal stepsize restrictions.Numerical experiments are done to verify the theoretical results.展开更多
This paper is concerned with numerical solutions of time-fractional nonlinear parabolic problems by a class of L1-Galerkin finite element methods.The analysis of L1 methods for time-fractional nonlinear problems is li...This paper is concerned with numerical solutions of time-fractional nonlinear parabolic problems by a class of L1-Galerkin finite element methods.The analysis of L1 methods for time-fractional nonlinear problems is limited mainly due to the lack of a fundamental Gronwall type inequality.In this paper,we establish such a fundamental inequality for the L1 approximation to the Caputo fractional derivative.In terms of the Gronwall type inequality,we provide optimal error estimates of several fully discrete linearized Galerkin finite element methods for nonlinear problems.The theoretical results are illustrated by applying our proposed methods to the time fractional nonlinear Huxley equation and time fractional Fisher equation.展开更多
This paper is devoted to the study of fractional(q, p)-Sobolev-Poincar′e inequalities in irregular domains. In particular, the author establishes(essentially) sharp fractional(q, p)-Sobolev-Poincar′e inequalities in...This paper is devoted to the study of fractional(q, p)-Sobolev-Poincar′e inequalities in irregular domains. In particular, the author establishes(essentially) sharp fractional(q, p)-Sobolev-Poincar′e inequalities in s-John domains and in domains satisfying the quasihyperbolic boundary conditions. When the order of the fractional derivative tends to 1, our results tend to the results for the usual derivatives. Furthermore, the author verifies that those domains which support the fractional(q, p)-Sobolev-Poincar′e inequalities together with a separation property are s-diam John domains for certain s, depending only on the associated data. An inaccurate statement in [Buckley, S. and Koskela, P.,Sobolev-Poincar′e implies John, Math. Res. Lett., 2(5), 1995, 577–593] is also pointed out.展开更多
In this paper,a compact finite difference scheme for the nonlinear fractional integro-differential equation with weak singularity at the initial time is developed,with O(N^(-(2-α))+M^(-4))accuracy order,where N;M den...In this paper,a compact finite difference scheme for the nonlinear fractional integro-differential equation with weak singularity at the initial time is developed,with O(N^(-(2-α))+M^(-4))accuracy order,where N;M denote the numbers of grids in temporal and spatial direction,α ∈(0,1)is the fractional order.To recover the full accuracy based on the regularity requirement of the solution,we adopt the L1 method and the trapezoidal product integration(PI)rule with graded meshes to discretize the Caputo derivative and the Riemann-Liouville integral,respectively,further handle the nonlinear term carefully by the Newton linearized method.Based on the discrete fractional Gr¨onwall inequality and preserved discrete coefficients of Riemann-Liouville fractional integral,the stability and convergence of the proposed scheme are analyzed by the energy method.Theoretical results are also confirmed by a numerical example.展开更多
We derive the sharp Moser-Trudinger-Onofri inequalities on the standard n-sphere and CR(2n+1)-sphere as the limit of the sharp fractional Sobolev inequalities for all n≥1.On the 2-sphere and 4-sphere,this was establi...We derive the sharp Moser-Trudinger-Onofri inequalities on the standard n-sphere and CR(2n+1)-sphere as the limit of the sharp fractional Sobolev inequalities for all n≥1.On the 2-sphere and 4-sphere,this was established recently by Chang and Wang.Our proof uses an alternative and elementary argument.展开更多
基金supported by the National Natural Science Foundation of China(11471230,11671282)。
文摘This article deals with a new fractional nonlinear delay evolution system driven by a hemi-variational inequality in a Banach space.Utilizing the KKM theorem,a result concerned with the upper semicontinuity and measurability of the solution set of a hemivariational inequality is established.By using a fixed point theorem for a condensing setvalued map,the nonemptiness and compactness of the set of mild solutions are also obtained for such a system under mild conditions.Finally,an example is presented to illustrate our main results.
基金received funding from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement(823731-CONMECH)supported by the National Science Center of Poland under Maestro Project(UMO-2012/06/A/ST1/00262)+3 种基金National Science Center of Poland under Preludium Project(2017/25/N/ST1/00611)supported by the International Project co-financed by the Ministry of Science and Higher Education of Republic of Poland(3792/GGPJ/H2020/2017/0)Qinzhou University Project(2018KYQD06)National Natural Sciences Foundation of Guangxi(2018JJA110006)
文摘The goal of the present paper is to investigate an abstract system, called fractional differential variational inequality, which consists of a mixed variational inequality combined with a fractional evolution equation in the framework of Banach spaces. Using discrete approximation approach, an existence theorem of solutions for the inequality is established under some suitable assumptions.
文摘In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional differential equations.
基金Natural Science Foundation of China(Grant No.12071185)。
文摘In this paper we study the existence of nontrivial solutions to the well-known Brezis–Nirenberg problem involving the fractional p-Laplace operator in unbounded cylinder type domains.By means of the fractional Poincaréinequality in unbounded cylindrical domains,we first study the asymptotic property of the first eigenvalueλp,s(ωδ)with respect to the domainωδ.Then,by applying the concentration-compactness principle for fractional Sobolev spaces in unbounded domains,we prove the existence results.The present work complements the results of Mosconi–Perera–Squassina–Yang[The Brezis–Nirenberg problem for the fractional p-Laplacian.C alc.Var.Partial Differential Equations,55(4),25 pp.2016]to unbounded domains and extends the classical Brezis–Nirenberg type results of Ramos–Wang–Willem[Positive solutions for elliptic equations with critical growth in unbounded domains.In:Chapman Hall/CRC Press,Boca Raton,2000,192–199]to the fractional p-Laplacian setting.
基金supported by the National Natural Science Foundation of China under grants No.11971010,11771162,12231003.
文摘A linearized transformed L1 Galerkin finite element method(FEM)is presented for numerically solving the multi-dimensional time fractional Schr¨odinger equations.Unconditionally optimal error estimates of the fully-discrete scheme are proved.Such error estimates are obtained by combining a new discrete fractional Gr¨onwall inequality,the corresponding Sobolev embedding theorems and some inverse inequalities.While the previous unconditional convergence results are usually obtained by using the temporal-spatial error spitting approaches.Numerical examples are presented to confirm the theoretical results.
基金supported by the NSFC (No.12001067)by the Natural Science Foundation of Chongqing,China (No.cstc2019jcyj-bshX0038)by the China Postdoctoral Science Foundation funded Project No.2019M653333.
文摘We present Alikhanov linearized Galerkin methods for solving the nonlinear time fractional Schrödinger equations.Unconditionally optimal estimates of the fully-discrete scheme are obtained by using the fractional time-spatial splitting argument.The convergence results indicate that the error estimates hold without any spatial-temporal stepsize restrictions.Numerical experiments are done to verify the theoretical results.
基金This work is supported by NSFC(Grant Nos.11771035,11771162,11571128,61473126,91430216,91530204,11372354 and U1530401),a grant from the RGC of HK 11300517,China(Project No.CityU 11302915),China Postdoctoral Science Foundation under grant No.2016M602273,a grant DRA2015518 from 333 High-level Personal Training Project of Jiangsu Province,and the USA National Science Foundation grant DMS-1315259the USA Air Force Office of Scientific Research grant FA9550-15-1-0001.Jiwei Zhang also thanks the hospitality of Hong Kong City University during the period of his visiting.
文摘This paper is concerned with numerical solutions of time-fractional nonlinear parabolic problems by a class of L1-Galerkin finite element methods.The analysis of L1 methods for time-fractional nonlinear problems is limited mainly due to the lack of a fundamental Gronwall type inequality.In this paper,we establish such a fundamental inequality for the L1 approximation to the Caputo fractional derivative.In terms of the Gronwall type inequality,we provide optimal error estimates of several fully discrete linearized Galerkin finite element methods for nonlinear problems.The theoretical results are illustrated by applying our proposed methods to the time fractional nonlinear Huxley equation and time fractional Fisher equation.
文摘This paper is devoted to the study of fractional(q, p)-Sobolev-Poincar′e inequalities in irregular domains. In particular, the author establishes(essentially) sharp fractional(q, p)-Sobolev-Poincar′e inequalities in s-John domains and in domains satisfying the quasihyperbolic boundary conditions. When the order of the fractional derivative tends to 1, our results tend to the results for the usual derivatives. Furthermore, the author verifies that those domains which support the fractional(q, p)-Sobolev-Poincar′e inequalities together with a separation property are s-diam John domains for certain s, depending only on the associated data. An inaccurate statement in [Buckley, S. and Koskela, P.,Sobolev-Poincar′e implies John, Math. Res. Lett., 2(5), 1995, 577–593] is also pointed out.
基金supported by the National Natural Science Foundation of China(No.11701103,11801095)Young Top-notch Talent Program of Guangdong Province(No.2017GC010379)+2 种基金Natural Science Foundation of Guangdong Province(No.2022A1515012147,2019A1515010876,2017A030310538)the Project of Science and Technology of Guangzhou(No.201904010341,202102020704)the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University(2021023)。
文摘In this paper,a compact finite difference scheme for the nonlinear fractional integro-differential equation with weak singularity at the initial time is developed,with O(N^(-(2-α))+M^(-4))accuracy order,where N;M denote the numbers of grids in temporal and spatial direction,α ∈(0,1)is the fractional order.To recover the full accuracy based on the regularity requirement of the solution,we adopt the L1 method and the trapezoidal product integration(PI)rule with graded meshes to discretize the Caputo derivative and the Riemann-Liouville integral,respectively,further handle the nonlinear term carefully by the Newton linearized method.Based on the discrete fractional Gr¨onwall inequality and preserved discrete coefficients of Riemann-Liouville fractional integral,the stability and convergence of the proposed scheme are analyzed by the energy method.Theoretical results are also confirmed by a numerical example.
基金supported in part by NSFC 11501034,NSFC 11571019 and the key project NSFC 11631002.
文摘We derive the sharp Moser-Trudinger-Onofri inequalities on the standard n-sphere and CR(2n+1)-sphere as the limit of the sharp fractional Sobolev inequalities for all n≥1.On the 2-sphere and 4-sphere,this was established recently by Chang and Wang.Our proof uses an alternative and elementary argument.