In order to study discrete fractional Birkhoff equations for Birkhoffian systems,the method of isochronous variational principle is used in this paper. Discrete fractional Pfaff-Birkhoff principle in terms of time sca...In order to study discrete fractional Birkhoff equations for Birkhoffian systems,the method of isochronous variational principle is used in this paper. Discrete fractional Pfaff-Birkhoff principle in terms of time scales is presented. Discrete fractional Birkhoff equations with left and right discrete operators of Riemann-Liouville type are established and some special cases including classical discrete Birkhoff equations,discrete fractional Hamilton equations and discrete fractional Lagrange equations are discussed. Finally,an example is devoted to illustrate the results.展开更多
By establishing the relation between the optical scaled fractional Fourier transform (FFT) and quantum mechanical squeezing-rotating operator transform, we employ the bipartite entangled state representation of two-...By establishing the relation between the optical scaled fractional Fourier transform (FFT) and quantum mechanical squeezing-rotating operator transform, we employ the bipartite entangled state representation of two-mode squeezing operator to extend the scaled FFT to more general cases, such as scaled complex FFT and entangled scaled FFT. The additiyity and eigenmodes are presented in quantum version. The relation between the scaled FFT and squeezing-rotating Wigner operator is studied.展开更多
基金National Natural Science Foundations of China(Nos.11272227,11572212)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(No.KYLX15_0405)
文摘In order to study discrete fractional Birkhoff equations for Birkhoffian systems,the method of isochronous variational principle is used in this paper. Discrete fractional Pfaff-Birkhoff principle in terms of time scales is presented. Discrete fractional Birkhoff equations with left and right discrete operators of Riemann-Liouville type are established and some special cases including classical discrete Birkhoff equations,discrete fractional Hamilton equations and discrete fractional Lagrange equations are discussed. Finally,an example is devoted to illustrate the results.
基金National Natural Science Foundation of China under Grant Nos.10775097,10874174,and 10647133the Natural Science Foundation of Jiangxi Province under Grant Nos.2007GQS1906 and 2007GZS1871the Research Foundation of the Education Department of Jiangxi Province under Grant No.[2007]22
文摘By establishing the relation between the optical scaled fractional Fourier transform (FFT) and quantum mechanical squeezing-rotating operator transform, we employ the bipartite entangled state representation of two-mode squeezing operator to extend the scaled FFT to more general cases, such as scaled complex FFT and entangled scaled FFT. The additiyity and eigenmodes are presented in quantum version. The relation between the scaled FFT and squeezing-rotating Wigner operator is studied.