Nowadays,one of the most important difficulties is the protection and privacy of confidential data.To address these problems,numerous organizations rely on the use of cryptographic techniques to secure data from illeg...Nowadays,one of the most important difficulties is the protection and privacy of confidential data.To address these problems,numerous organizations rely on the use of cryptographic techniques to secure data from illegal activities and assaults.Modern cryptographic ciphers use the non-linear component of block cipher to ensure the robust encryption process and lawful decoding of plain data during the decryption phase.For the designing of a secure substitution box(S-box),non-linearity(NL)which is an algebraic property of the S-box has great importance.Consequently,the main focus of cryptographers is to achieve the S-box with a high value of non-linearity.In this suggested study,an algebraic approach for the construction of 16×16 S-boxes is provided which is based on the fractional transformation Q(z)=1/α(z)^(m)+β(mod257)and finite field.This technique is only applicable for the even number exponent in the range(2-254)that are not multiples of 4.Firstly,we choose a quadratic fractional transformation,swap each missing element with repeating elements,and acquire the initial S-box.In the second stage,a special permutation of the symmetric group S256 is utilized to construct the final S-box,which has a higher NL score of 112.75 than the Advanced Encryption Standard(AES)S-box and a lower linear probability score of 0.1328.In addition,a tabular and graphical comparison of various algebraic features of the created S-box with many other S-boxes from the literature is provided which verifies that the created S-box has the ability and is good enough to withstand linear and differential attacks.From different analyses,it is ensured that the proposed S-boxes are better than as compared to the existing S-boxes.Further these S-boxes can be utilized in the security of the image data and the text data.展开更多
In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws...In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws instead of a single one, the control performance can be improved and the region of attraction can be enlarged compared with the existing model predictive control (MPC) approaches. Moreover, a synthesis approach of MPC is developed to achieve high performance with lower on-line computational burden. The effectiveness of the proposed approach is verified by simulation examples.展开更多
Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology refe...Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).展开更多
By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hyperbolic function,i.e.,tan α → tanh α,sin α →〉 sinh α,we find the quantum mechanical fractional...By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hyperbolic function,i.e.,tan α → tanh α,sin α →〉 sinh α,we find the quantum mechanical fractional squeezing transformation(FrST) which satisfies additivity.By virtue of the integration technique within the ordered product of operators(IWOP) we derive the unitary operator responsible for the FrST,which is composite and is made of e^iπa+a/2 and exp[iα/2(a^2 +a^+2).The FrST may be implemented in combinations of quadratic nonlinear crystals with different phase mismatches.展开更多
Starting from the optical fractional Fourier transform (FFT) and using the technique of integration withinan ordered product of operators we establish a formalism of FFT for quantum mechanical wave functions. In doing...Starting from the optical fractional Fourier transform (FFT) and using the technique of integration withinan ordered product of operators we establish a formalism of FFT for quantum mechanical wave functions. In doing so, theessence of FFT can be seen more clearly, and the FFT of some wave functions can be derived more directly and concisely.We also point out that different FFT integral kernels correspond to different quantum mechanical representations. Theyare generalized FFT. The relationship between the FFT and the rotated Wigner operator is studied by virtue of theWeyl ordered form of the Wigner operator.展开更多
Based on our previous paper (Commun.Theor.Phys.39 (2003) 417) we derive the convolution theoremof fractional Fourier transformation in the context of quantum mechanics,which seems a convenient and neat way.Generalizat...Based on our previous paper (Commun.Theor.Phys.39 (2003) 417) we derive the convolution theoremof fractional Fourier transformation in the context of quantum mechanics,which seems a convenient and neat way.Generalization of this method to the complex fractional Fourier transformation case is also possible.展开更多
We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transfo...We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transformation kernel. The EFFT's additivity property is proved and the eigenmode of EFFT is derived. As an application, we calculate the EFFT of the three-mode squeezed vacuum state.展开更多
In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechani...In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechanical operators corresponding to the generation of fractional Fourier transform.The core function of the coordinate-momentum exchange operators in the addition law of fractional Fourier transform was analyzed too.In this paper,the bivariate operator Hermite polynomial theory and the technique of integration within an ordered product of operators(IWOP)are used to establish the entanglement fractional Fourier transform theory to the extent of quantum.A new function generating formula and an operator for generating quantum entangled fractional Fourier transform are obtained using the fractional Fourier transform relationship in a pair of conjugated entangled state representations.展开更多
This article studies a nonlinear fractional order Lotka-Volterra prey-predator type dynamical system.For the proposed study,we consider the model under the conformable fractional order derivative(CFOD).We investigate ...This article studies a nonlinear fractional order Lotka-Volterra prey-predator type dynamical system.For the proposed study,we consider the model under the conformable fractional order derivative(CFOD).We investigate the mentioned dynamical system for the existence and uniqueness of at least one solution.Indeed,Schauder and Banach fixed point theorems are utilized to prove our claim.Further,an algorithm for the approximate analytical solution to the proposed problem has been established.In this regard,the conformable fractional differential transform(CFDT)technique is used to compute the required results in the form of a series.Using Matlab-16,we simulate the series solution to illustrate our results graphically.Finally,a comparison of our solution to that obtained for the Caputo fractional order derivative via the perturbation method is given.展开更多
In this paper,an algorithm based on a fractional time-frequency spectrum feature is proposed to improve the accuracy of synthetic aperture radar(SAR)target detection.By extending the fractional Gabor transform(FrGT)in...In this paper,an algorithm based on a fractional time-frequency spectrum feature is proposed to improve the accuracy of synthetic aperture radar(SAR)target detection.By extending the fractional Gabor transform(FrGT)into two dimensions,the fractional time-frequency spectrum feature of an image can be obtained.In the achievement process,we search for the optimal order and design the optimal window function to accomplish the two-dimensional optimal FrGT.Finally,the energy attenuation gradient(EAG)feature of the optimal time-frequency spectrum is extracted for high-frequency detection.The simulation results show the proposed algorithm has a good performance in SAR target detection and lays the foundation for recognition.展开更多
Currently, it is difficult for people to express signal information simultaneously in the time and frequency domains when analyzing acoustic logging signals using a simple-time or frequency-domain method. It is diffic...Currently, it is difficult for people to express signal information simultaneously in the time and frequency domains when analyzing acoustic logging signals using a simple-time or frequency-domain method. It is difficult to use a single type of time-frequency analysis method, which affects the feasibility of acoustic logging signal analysis. In order to solve these problems, in this paper, a fractional Fourier transform and smooth pseudo Wigner Ville distribution (SPWD) were combined and used to analyze array acoustic logging signals. The time-frequency distribution of signals with the variation of orders of fractional Fourier transform was obtained, and the characteristics of the time-frequency distribution of different reservoirs under different orders were summarized. Because of the rotational characteristics of the fractional Fourier transform, the rotation speed of the cross terms was faster than those of primary waves, shear waves, Stoneley waves, and pseudo Rayleigh waves. By choosing different orders for different reservoirs according to the actual circumstances, the cross terms were separated from the four kinds of waves. In this manner, we could extract reservoir information by studying the characteristics of partial waves. Actual logging data showed that the method outlined in this paper greatly weakened cross-term interference and enhanced the ability to identify partial wave signals.展开更多
The S transform, which is a time-frequency representation known for its local spectral phase properties in signal processing, uniquely combines elements of wavelet transforms and the short-time Fourier transform (STF...The S transform, which is a time-frequency representation known for its local spectral phase properties in signal processing, uniquely combines elements of wavelet transforms and the short-time Fourier transform (STFT). The fractional Fourier transform is a tool for non-stationary signal analysis. In this paper, we define the concept of the fractional S transform (FRST) of a signal, based on the idea of the fractional Fourier transform (FRFT) and S transform (ST), extend the S transform to the time-fractional frequency domain from the time- frequency domain to obtain the inverse transform, and study the FRST mathematical properties. The FRST, which has the advantages of FRFT and ST, can enhance the ST flexibility to process signals. Compared to the S transform, the FRST can effectively improve the signal time- frequency resolution capacity. Simulation results show that the proposed method is effective.展开更多
Amidst the swift advancement of new power systems and electric vehicles,inverter-fed machines have progressively materialized as a pivotal apparatus for efficient energy conversion.Stator winding turn insulation failu...Amidst the swift advancement of new power systems and electric vehicles,inverter-fed machines have progressively materialized as a pivotal apparatus for efficient energy conversion.Stator winding turn insulation failure is the root cause of inverter-fed machine breakdown.The online monitoring of turn insulation health can detect potential safety risks promptly,but faces the challenge of weak characteristics of turn insulation degradation.This study proposes an innovative method to evaluate the turn insulation state of inverter-fed machines by utilizing the fractional Fourier transform with a Mel filter(FrFT-Mel).First,the sensitivity of the high-frequency(HF)switching oscillation current to variations in turn insulation was analyzed within the fractional domain.Subsequently,an improved Mel filter is introduced,and its structure and parameters are specifically designed based on the features intrinsic to the common-mode impedance resonance point of the electrical machine.Finally,an evaluation index was proposed for the turn insulation state of inverter-fed machines.Experimental results on a 3kW permanent magnet synchronous machine(PMSM)demonstrate that the proposed FrFT-Mel method significantly enhances the sensitivity of turn insulation state perception by approximately five times,compared to the traditional Fourier transform method.展开更多
Directional modulation(DM)is one of the most promising secure communication techniques.However,when the eavesdropper is co-located with the legitimate receiver,the conventional DM has the disadvantages of weak anti-sc...Directional modulation(DM)is one of the most promising secure communication techniques.However,when the eavesdropper is co-located with the legitimate receiver,the conventional DM has the disadvantages of weak anti-scanning capability,anti-deciphering capability,and low secrecy rate.In response to these problems,we propose a twodimensional multi-term weighted fractional Fourier transform aided DM scheme,in which the legitimate receiver and the transmitter use different transform terms and transform orders to encrypt and decrypt the confidential information.In order to further lower the probability of being deciphered by an eavesdropper,we use the subblock partition method to convert the one-dimensional modulated signal vector into a twodimensional signal matrix,increasing the confusion of the useful information.Numerical results demonstrate that the proposed DM scheme not only provides stronger anti-deciphering and anti-scanning capabilities but also improves the secrecy rate performance of the system.展开更多
Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties ...Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties in dealing with high dimensional time series target data, a threat assessment method based on self-attention mechanism and gated recurrent unit(SAGRU) is proposed. Firstly, a threat feature system including air combat situations and capability features is established. Moreover, a data augmentation process based on fractional Fourier transform(FRFT) is applied to extract more valuable information from time series situation features. Furthermore, aiming to capture key characteristics of battlefield evolution, a bidirectional GRU and SA mechanisms are designed for enhanced features.Subsequently, after the concatenation of the processed air combat situation and capability features, the target threat level will be predicted by fully connected neural layers and the softmax classifier. Finally, in order to validate this model, an air combat dataset generated by a combat simulation system is introduced for model training and testing. The comparison experiments show the proposed model has structural rationality and can perform threat assessment faster and more accurately than the other existing models based on deep learning.展开更多
Accurate detection of exercise fatigue based on physiological signals is vital for reason-able physical activity.As a non-invasive technology,phonocardiogram(PCG)signals possess arobust capability to reflect cardiovas...Accurate detection of exercise fatigue based on physiological signals is vital for reason-able physical activity.As a non-invasive technology,phonocardiogram(PCG)signals possess arobust capability to reflect cardiovascular information,and their data acquisition devices are quiteconvenient.In this study,a novel hybrid approach of fractional Fourier transform(FRFT)com-bined with linear and discrete wavelet transform(DWT)features extracted from PCG is proposedfor PCG multi-class classification.The proposed system enhances the fatigue detection performanceby combining optimized FRFT features with an effective aggregation of linear features and DWTfeatures.The FRFT technique is employed to convert the 1-D PCG signal into 2-D image which issent to a pre-trained convolutional neural network structure,called VGG-16.The features from theVGG-16 were concatenated with the linear and DWT features to form fused features.The fusedfeatures are sent to support vector machine(SVM)to distinguish six distinct fatigue levels.Experi-mental results demonstrate that the proposed fused features outperform other feature combinationssignificantly.展开更多
Detection of maneuvering small targets has always been an important yet challenging task for radar signal processing.One primary reason is that target variable motions within coherent processing interval generate ener...Detection of maneuvering small targets has always been an important yet challenging task for radar signal processing.One primary reason is that target variable motions within coherent processing interval generate energy migrations across multiple resolution bins,which severely deteriorate the parameter estimation performance.A coarse-to-fine strategy for the detection of maneuvering small targets is proposed.Integration of small points segmented coherently is performed first,and then an optimal inter-segment integration is utilized to derive the coarse estimation of the chirp rate.Sparse fractional Fourier transform(FrFT)is then employed to refine the coarse estimation at a significantly reduced computational complexity.Simulation results verify the proposed scheme that achieves an efficient and reliable maneuvering target detection with-16dB input signal-to-noise ratio(SNR),while requires no exact a priori knowledge on the motion parameters.展开更多
The FOURIER transform is one of the most frequently used tools in signal analysis. A generalization of the Fourier transform-the fractional Fourier transform-has become a powerful tool for time-varying signal analys...The FOURIER transform is one of the most frequently used tools in signal analysis. A generalization of the Fourier transform-the fractional Fourier transform-has become a powerful tool for time-varying signal analysis. The mean square error(MSE) is used as design criteria to estimate signal. Wiener filter, which can be implement in O(NlogN) time, is suited for time-invariant degradation models. For time-variant and non-stationary processes, however, the linear estimate requires O(N 2 ). Filtering in fractional Fourier domains permits reduction of the error compared with ordinary Fourier domain filtering while requiring O(NlogN) implementation time. The blurred images that have several degradation models with different SNR are restored in the experiments. The results show that the method presented in this paper is valid and that the effect of restoration is improved as SNR is increased.展开更多
Distinguishing close chirp-rates of different linear frequency modulation (LFM) signals under concentrated and complicated signal environment was studied. Firstly, detection and parameter estimation of multi-compone...Distinguishing close chirp-rates of different linear frequency modulation (LFM) signals under concentrated and complicated signal environment was studied. Firstly, detection and parameter estimation of multi-component LFM signal were used by discrete fast fractional Fourier transform (FrFT). Then the expression of chirp-rate resolution in fractional Fourier domain (FrFD) was deduced from discrete normalize time-frequency distribution, when multi-component LFM signal had only one center frequency. Furthermore, the detail influence of the sampling time, sampling frequency and chirp-rate upon the resolution was analyzed by partial differential equation. Simulation results and analysis indicate that increasing the sampling time can enhance the resolution, but the influence of the sampling frequency can he omitted. What's more, in multi-component LFM signal, the chirp-rate resolution of FrFT is no less than a minimal value, and it mainly dependent on the biggest value of chirp-rates, with which it has an approximately positive exponential relationship.展开更多
In this paper a joint timing and frequency synchronization method based on Fractional Fourier Transform (FIFT) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) system. The combination of two chirp...In this paper a joint timing and frequency synchronization method based on Fractional Fourier Transform (FIFT) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) system. The combination of two chirp signals with opposite chirp rates are used as the training signal, the received training signal with timing and frequency offset is transformed by FrFT and the two peaks representing two chirps in FrFT domain are detected, then the position coordinates of the two peaks are precisely corrected and substituted into an equation group to calculate timing and frequency offset simultaneously. This method only needs one FrFT calculation to implement synchronization, the computational complexity is equal to that of FFT and less than that of correlation or maximum likelihood calculation of existing methods, and estimation range of frequency offset is Large, greater than half the signal bandwidth, while the simulation results show that even at low SNR it can accurately estimate timing and frequency offset and the estimation error is less than that of existing methods.展开更多
基金The authors received the funding for this study from King Saud University,Riyadh,Saudi Arabia under the research supporting project Number RSP 2023R167.Sameh Askar received this grant from King Saud University。
文摘Nowadays,one of the most important difficulties is the protection and privacy of confidential data.To address these problems,numerous organizations rely on the use of cryptographic techniques to secure data from illegal activities and assaults.Modern cryptographic ciphers use the non-linear component of block cipher to ensure the robust encryption process and lawful decoding of plain data during the decryption phase.For the designing of a secure substitution box(S-box),non-linearity(NL)which is an algebraic property of the S-box has great importance.Consequently,the main focus of cryptographers is to achieve the S-box with a high value of non-linearity.In this suggested study,an algebraic approach for the construction of 16×16 S-boxes is provided which is based on the fractional transformation Q(z)=1/α(z)^(m)+β(mod257)and finite field.This technique is only applicable for the even number exponent in the range(2-254)that are not multiples of 4.Firstly,we choose a quadratic fractional transformation,swap each missing element with repeating elements,and acquire the initial S-box.In the second stage,a special permutation of the symmetric group S256 is utilized to construct the final S-box,which has a higher NL score of 112.75 than the Advanced Encryption Standard(AES)S-box and a lower linear probability score of 0.1328.In addition,a tabular and graphical comparison of various algebraic features of the created S-box with many other S-boxes from the literature is provided which verifies that the created S-box has the ability and is good enough to withstand linear and differential attacks.From different analyses,it is ensured that the proposed S-boxes are better than as compared to the existing S-boxes.Further these S-boxes can be utilized in the security of the image data and the text data.
基金supported by National Natural Science Foundation of China (No. 60934007, No. 61074060)China Postdoctoral Science Foundation (No. 20090460627)+1 种基金Shanghai Postdoctoral Scientific Program (No. 10R21414600)China Postdoctoral Science Foundation Special Support (No. 201003272)
文摘In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws instead of a single one, the control performance can be improved and the region of attraction can be enlarged compared with the existing model predictive control (MPC) approaches. Moreover, a synthesis approach of MPC is developed to achieve high performance with lower on-line computational burden. The effectiveness of the proposed approach is verified by simulation examples.
文摘Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).
基金supported by the National Natural Science Foundation of China(Grant No.11304126)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20130532)+2 种基金the Natural Science Fund for Colleges and Universities in Jiangsu Province,China(Grant No.13KJB140003)the Postdoctoral Science Foundation of China(Grant No.2013M541608)the Postdoctoral Science Foundation of Jiangsu Province,China(Grant No.1202012B)
文摘By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hyperbolic function,i.e.,tan α → tanh α,sin α →〉 sinh α,we find the quantum mechanical fractional squeezing transformation(FrST) which satisfies additivity.By virtue of the integration technique within the ordered product of operators(IWOP) we derive the unitary operator responsible for the FrST,which is composite and is made of e^iπa+a/2 and exp[iα/2(a^2 +a^+2).The FrST may be implemented in combinations of quadratic nonlinear crystals with different phase mismatches.
文摘Starting from the optical fractional Fourier transform (FFT) and using the technique of integration withinan ordered product of operators we establish a formalism of FFT for quantum mechanical wave functions. In doing so, theessence of FFT can be seen more clearly, and the FFT of some wave functions can be derived more directly and concisely.We also point out that different FFT integral kernels correspond to different quantum mechanical representations. Theyare generalized FFT. The relationship between the FFT and the rotated Wigner operator is studied by virtue of theWeyl ordered form of the Wigner operator.
基金National Natural Science Foundation of China under Grant No.10775097
文摘Based on our previous paper (Commun.Theor.Phys.39 (2003) 417) we derive the convolution theoremof fractional Fourier transformation in the context of quantum mechanics,which seems a convenient and neat way.Generalization of this method to the complex fractional Fourier transformation case is also possible.
基金Project supported by the Specialized Research Fund for Doctoral Program of High Education of Chinathe National Natural Science Foundation of China (Grant Nos. 10874174 and 10947017/A05)
文摘We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transformation kernel. The EFFT's additivity property is proved and the eigenmode of EFFT is derived. As an application, we calculate the EFFT of the three-mode squeezed vacuum state.
基金Project supported by the National Natural Science Foundation of China(Grant No.11775208)the Foundation for Young Talents at the College of Anhui Province,China(Grant Nos.gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.KJ2020A0638 and 2022AH051586)。
文摘In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechanical operators corresponding to the generation of fractional Fourier transform.The core function of the coordinate-momentum exchange operators in the addition law of fractional Fourier transform was analyzed too.In this paper,the bivariate operator Hermite polynomial theory and the technique of integration within an ordered product of operators(IWOP)are used to establish the entanglement fractional Fourier transform theory to the extent of quantum.A new function generating formula and an operator for generating quantum entangled fractional Fourier transform are obtained using the fractional Fourier transform relationship in a pair of conjugated entangled state representations.
文摘This article studies a nonlinear fractional order Lotka-Volterra prey-predator type dynamical system.For the proposed study,we consider the model under the conformable fractional order derivative(CFOD).We investigate the mentioned dynamical system for the existence and uniqueness of at least one solution.Indeed,Schauder and Banach fixed point theorems are utilized to prove our claim.Further,an algorithm for the approximate analytical solution to the proposed problem has been established.In this regard,the conformable fractional differential transform(CFDT)technique is used to compute the required results in the form of a series.Using Matlab-16,we simulate the series solution to illustrate our results graphically.Finally,a comparison of our solution to that obtained for the Caputo fractional order derivative via the perturbation method is given.
基金supported by the Natural Science Foundation of Sichuan Province of China under Grant No.2022NSFSC40574partially supported by the National Natural Science Foundation of China under Grants No.61571096 and No.61775030.
文摘In this paper,an algorithm based on a fractional time-frequency spectrum feature is proposed to improve the accuracy of synthetic aperture radar(SAR)target detection.By extending the fractional Gabor transform(FrGT)into two dimensions,the fractional time-frequency spectrum feature of an image can be obtained.In the achievement process,we search for the optimal order and design the optimal window function to accomplish the two-dimensional optimal FrGT.Finally,the energy attenuation gradient(EAG)feature of the optimal time-frequency spectrum is extracted for high-frequency detection.The simulation results show the proposed algorithm has a good performance in SAR target detection and lays the foundation for recognition.
基金supported by National Natural Science Foundation of China(Grant No.40874059)
文摘Currently, it is difficult for people to express signal information simultaneously in the time and frequency domains when analyzing acoustic logging signals using a simple-time or frequency-domain method. It is difficult to use a single type of time-frequency analysis method, which affects the feasibility of acoustic logging signal analysis. In order to solve these problems, in this paper, a fractional Fourier transform and smooth pseudo Wigner Ville distribution (SPWD) were combined and used to analyze array acoustic logging signals. The time-frequency distribution of signals with the variation of orders of fractional Fourier transform was obtained, and the characteristics of the time-frequency distribution of different reservoirs under different orders were summarized. Because of the rotational characteristics of the fractional Fourier transform, the rotation speed of the cross terms was faster than those of primary waves, shear waves, Stoneley waves, and pseudo Rayleigh waves. By choosing different orders for different reservoirs according to the actual circumstances, the cross terms were separated from the four kinds of waves. In this manner, we could extract reservoir information by studying the characteristics of partial waves. Actual logging data showed that the method outlined in this paper greatly weakened cross-term interference and enhanced the ability to identify partial wave signals.
基金supported by Scientific Research Fund of Sichuan Provincial Education Departmentthe National Nature Science Foundation of China (No. 40873035)
文摘The S transform, which is a time-frequency representation known for its local spectral phase properties in signal processing, uniquely combines elements of wavelet transforms and the short-time Fourier transform (STFT). The fractional Fourier transform is a tool for non-stationary signal analysis. In this paper, we define the concept of the fractional S transform (FRST) of a signal, based on the idea of the fractional Fourier transform (FRFT) and S transform (ST), extend the S transform to the time-fractional frequency domain from the time- frequency domain to obtain the inverse transform, and study the FRST mathematical properties. The FRST, which has the advantages of FRFT and ST, can enhance the ST flexibility to process signals. Compared to the S transform, the FRST can effectively improve the signal time- frequency resolution capacity. Simulation results show that the proposed method is effective.
基金supported in part by the National Natural Science Foundation of China under Grant 51907116in part sponsored by Natural Science Foundation of Shanghai 22ZR1425400sponsored by Shanghai Rising-Star Program 23QA1404000.
文摘Amidst the swift advancement of new power systems and electric vehicles,inverter-fed machines have progressively materialized as a pivotal apparatus for efficient energy conversion.Stator winding turn insulation failure is the root cause of inverter-fed machine breakdown.The online monitoring of turn insulation health can detect potential safety risks promptly,but faces the challenge of weak characteristics of turn insulation degradation.This study proposes an innovative method to evaluate the turn insulation state of inverter-fed machines by utilizing the fractional Fourier transform with a Mel filter(FrFT-Mel).First,the sensitivity of the high-frequency(HF)switching oscillation current to variations in turn insulation was analyzed within the fractional domain.Subsequently,an improved Mel filter is introduced,and its structure and parameters are specifically designed based on the features intrinsic to the common-mode impedance resonance point of the electrical machine.Finally,an evaluation index was proposed for the turn insulation state of inverter-fed machines.Experimental results on a 3kW permanent magnet synchronous machine(PMSM)demonstrate that the proposed FrFT-Mel method significantly enhances the sensitivity of turn insulation state perception by approximately five times,compared to the traditional Fourier transform method.
基金supported by National Natural Science Foundation of China(No.62171445)。
文摘Directional modulation(DM)is one of the most promising secure communication techniques.However,when the eavesdropper is co-located with the legitimate receiver,the conventional DM has the disadvantages of weak anti-scanning capability,anti-deciphering capability,and low secrecy rate.In response to these problems,we propose a twodimensional multi-term weighted fractional Fourier transform aided DM scheme,in which the legitimate receiver and the transmitter use different transform terms and transform orders to encrypt and decrypt the confidential information.In order to further lower the probability of being deciphered by an eavesdropper,we use the subblock partition method to convert the one-dimensional modulated signal vector into a twodimensional signal matrix,increasing the confusion of the useful information.Numerical results demonstrate that the proposed DM scheme not only provides stronger anti-deciphering and anti-scanning capabilities but also improves the secrecy rate performance of the system.
基金supported by the National Natural Science Foundation of China (6202201562088101)+1 种基金Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100)Shanghai Municip al Commission of Science and Technology Project (19511132101)。
文摘Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties in dealing with high dimensional time series target data, a threat assessment method based on self-attention mechanism and gated recurrent unit(SAGRU) is proposed. Firstly, a threat feature system including air combat situations and capability features is established. Moreover, a data augmentation process based on fractional Fourier transform(FRFT) is applied to extract more valuable information from time series situation features. Furthermore, aiming to capture key characteristics of battlefield evolution, a bidirectional GRU and SA mechanisms are designed for enhanced features.Subsequently, after the concatenation of the processed air combat situation and capability features, the target threat level will be predicted by fully connected neural layers and the softmax classifier. Finally, in order to validate this model, an air combat dataset generated by a combat simulation system is introduced for model training and testing. The comparison experiments show the proposed model has structural rationality and can perform threat assessment faster and more accurately than the other existing models based on deep learning.
基金the National Natural Sci-ence Foundation of China(No.62301056)the Fundamental Research Funds for Central Universities(No.2022QN005).
文摘Accurate detection of exercise fatigue based on physiological signals is vital for reason-able physical activity.As a non-invasive technology,phonocardiogram(PCG)signals possess arobust capability to reflect cardiovascular information,and their data acquisition devices are quiteconvenient.In this study,a novel hybrid approach of fractional Fourier transform(FRFT)com-bined with linear and discrete wavelet transform(DWT)features extracted from PCG is proposedfor PCG multi-class classification.The proposed system enhances the fatigue detection performanceby combining optimized FRFT features with an effective aggregation of linear features and DWTfeatures.The FRFT technique is employed to convert the 1-D PCG signal into 2-D image which issent to a pre-trained convolutional neural network structure,called VGG-16.The features from theVGG-16 were concatenated with the linear and DWT features to form fused features.The fusedfeatures are sent to support vector machine(SVM)to distinguish six distinct fatigue levels.Experi-mental results demonstrate that the proposed fused features outperform other feature combinationssignificantly.
基金supported in part by the National Natural Science Foundation of China (Nos.62171029,61931015,U1833203)Natural Science Foundation of Beijing Municipality (No.4172052)supported in part by the Basic Research Program of Jiangsu Province (No.SBK2019042353)。
文摘Detection of maneuvering small targets has always been an important yet challenging task for radar signal processing.One primary reason is that target variable motions within coherent processing interval generate energy migrations across multiple resolution bins,which severely deteriorate the parameter estimation performance.A coarse-to-fine strategy for the detection of maneuvering small targets is proposed.Integration of small points segmented coherently is performed first,and then an optimal inter-segment integration is utilized to derive the coarse estimation of the chirp rate.Sparse fractional Fourier transform(FrFT)is then employed to refine the coarse estimation at a significantly reduced computational complexity.Simulation results verify the proposed scheme that achieves an efficient and reliable maneuvering target detection with-16dB input signal-to-noise ratio(SNR),while requires no exact a priori knowledge on the motion parameters.
文摘The FOURIER transform is one of the most frequently used tools in signal analysis. A generalization of the Fourier transform-the fractional Fourier transform-has become a powerful tool for time-varying signal analysis. The mean square error(MSE) is used as design criteria to estimate signal. Wiener filter, which can be implement in O(NlogN) time, is suited for time-invariant degradation models. For time-variant and non-stationary processes, however, the linear estimate requires O(N 2 ). Filtering in fractional Fourier domains permits reduction of the error compared with ordinary Fourier domain filtering while requiring O(NlogN) implementation time. The blurred images that have several degradation models with different SNR are restored in the experiments. The results show that the method presented in this paper is valid and that the effect of restoration is improved as SNR is increased.
基金Sponsored by the National Natural Science Foundation of China (60232010 ,60572094)the National Science Foundation of China for Distin-guished Young Scholars (60625104)
文摘Distinguishing close chirp-rates of different linear frequency modulation (LFM) signals under concentrated and complicated signal environment was studied. Firstly, detection and parameter estimation of multi-component LFM signal were used by discrete fast fractional Fourier transform (FrFT). Then the expression of chirp-rate resolution in fractional Fourier domain (FrFD) was deduced from discrete normalize time-frequency distribution, when multi-component LFM signal had only one center frequency. Furthermore, the detail influence of the sampling time, sampling frequency and chirp-rate upon the resolution was analyzed by partial differential equation. Simulation results and analysis indicate that increasing the sampling time can enhance the resolution, but the influence of the sampling frequency can he omitted. What's more, in multi-component LFM signal, the chirp-rate resolution of FrFT is no less than a minimal value, and it mainly dependent on the biggest value of chirp-rates, with which it has an approximately positive exponential relationship.
文摘In this paper a joint timing and frequency synchronization method based on Fractional Fourier Transform (FIFT) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) system. The combination of two chirp signals with opposite chirp rates are used as the training signal, the received training signal with timing and frequency offset is transformed by FrFT and the two peaks representing two chirps in FrFT domain are detected, then the position coordinates of the two peaks are precisely corrected and substituted into an equation group to calculate timing and frequency offset simultaneously. This method only needs one FrFT calculation to implement synchronization, the computational complexity is equal to that of FFT and less than that of correlation or maximum likelihood calculation of existing methods, and estimation range of frequency offset is Large, greater than half the signal bandwidth, while the simulation results show that even at low SNR it can accurately estimate timing and frequency offset and the estimation error is less than that of existing methods.