The J_2-integral induced from the interface of bimaterial solids(J_2^(interface))is stud- ied by numerical method.First,the effect on the J_2-integral induced from the interface is very significant in bimaterial solid...The J_2-integral induced from the interface of bimaterial solids(J_2^(interface))is stud- ied by numerical method.First,the effect on the J_2-integral induced from the interface is very significant in bimaterial solids,which is inherently related to that induced from the subinterface cracks.Moreover,it can be concluded that either the first or the second component of the J_k- vector is always equal to zero when the contour encloses both the cracks and the whole interface in bimaterial solids.Secondly,it can also be concluded that the interface does produce significant effect on the J_2-integral induced from the subinterface cracks(J_2^(sub))in bimaterial solids.This effect depends on the geometry of the crack arrangement,which is corresponding to the different interaction effect among the cracks and the interface.Moreover,the interface effect on the J_2^(sub) can be neglected when the distance from the crack center to the interface is large enough,which reveals that the bimaterial solids can be regarded as homogenous solids in fracture analysis when the subinterface crack is far enough from the interface.Three examples are given in this paper.展开更多
In this paper we prove in a new way, the well known result, that Fermat’s equation a<sup>4</sup> + b<sup>4</sup> = c<sup>4</sup>, is not solvable in ℕ , when abc≠0 . To show this ...In this paper we prove in a new way, the well known result, that Fermat’s equation a<sup>4</sup> + b<sup>4</sup> = c<sup>4</sup>, is not solvable in ℕ , when abc≠0 . To show this result, it suffices to prove that: ( F 0 ): a 1 4 + ( 2 s b 1 ) 4 = c 1 4 , is not solvable in ℕ , (where a 1 , b 1 , c 1 ∈2ℕ+1 , pairwise primes, with necessarly 2≤s∈ℕ ). The key idea of our proof is to show that if (F<sub>0</sub>) holds, then there exist α 2 , β 2 , γ 2 ∈2ℕ+1 , such that ( F 1 ): α 2 4 + ( 2 s−1 β 2 ) 4 = γ 2 4 , holds too. From where, one conclude that it is not possible, because if we choose the quantity 2 ≤ s, as minimal in value among all the solutions of ( F 0 ) , then ( α 2 ,2 s−1 β 2 , γ 2 ) is also a solution of Fermat’s type, but with 2≤s−1<s , witch is absurd. To reach such a result, we suppose first that (F<sub>0</sub>) is solvable in ( a 1 ,2 s b 1 , c 1 ) , s ≥ 2 like above;afterwards, proceeding with “Pythagorician divisors”, we creat the notions of “Fermat’s b-absolute divisors”: ( d b , d ′ b ) which it uses hereafter. Then to conclude our proof, we establish the following main theorem: there is an equivalence between (i) and (ii): (i) (F<sub>0</sub>): a 1 4 + ( 2 s b 1 ) 4 = c 1 4 , is solvable in ℕ , with 2≤s∈ℕ , ( a 1 , b 1 , c 1 )∈ ( 2ℕ+1 ) 3 , coprime in pairs. (ii) ∃( a 1 , b 1 , c 1 )∈ ( 2ℕ+1 ) 3 , coprime in pairs, for wich: ∃( b ′ 2 , b 2 , b ″ 2 )∈ ( 2ℕ+1 ) 3 coprime in pairs, and 2≤s∈ℕ , checking b 1 = b ′ 2 b 2 b ″ 2 , and such that for notations: S=s−λ( s−1 ) , with λ∈{ 0,1 } defined by c 1 − a 1 2 ≡λ( mod2 ) , d b =gcd( 2 s b 1 , c 1 − a 1 )= 2 S b 2 and d ′ b = 2 s−S b ′ 2 = 2 s B 2 d b , where ( 2 s B 2 ) 2 =gcd( b 1 2 , c 1 2 − a 1 2 ) , the following system is checked: { c 1 − a 1 = d b 4 2 2+λ = 2 2−λ ( 2 S−1 b 2 ) 4 c 1 + a 1 = 2 1+λ d ′ b 4 = 2 1+λ ( 2 s−S b ′ 2 ) 4 c 1 2 + a 1 2 =2 b ″ 2 4;and this system implies: ( b 1−λ,2 4 ) 2 + ( 2 4s−3 b λ,2 4 ) 2 = ( b ″ 2 2 ) 2;where: ( b 1−λ,2 , b λ,2 , b ″ 2 )={ ( b ′ 2 , b 2 , b ″ 2 ) if λ=0 ( b 2 , b ′ 2 , b ″ 2 ) if λ=1;From where, it is quite easy to conclude, following the method explained above, and which thus closes, part I, of this article. .展开更多
The electric fatigue load has a significant effect on the crack propagation behavior and failure life of piezoelectric materials and devices. In this paper, an electrical mixed-mode fatigue crack propagation model for...The electric fatigue load has a significant effect on the crack propagation behavior and failure life of piezoelectric materials and devices. In this paper, an electrical mixed-mode fatigue crack propagation model for piezoelectric materials is proposed based on the piezoelectric J_(k)-integral theory. The crack initiation, propagation, and life prediction criteria of piezoelectric materials under electric fatigue loading are given by this model, and the finite element simulation model is established to study the electrical mixed-mode crack propagation behavior of piezoelectric structures. Meanwhile, the electrical mixed-mode fatigue crack propagation model is applied to the fatigue crack propagation behavior of a piezoelectric typical defective structure, the crack–hole interference model. The mixed-mode crack propagation, fatigue life, and the interference behavior between the crack and hole at various hole locations of the crack–hole interference model are well recognized by this model. The crack propagation behavior under different electrical load intensities is also considered. The results show that the hole in front of the crack tip inhibits crack propagation to a certain extent, and the strength of electrical load affects the fatigue life of piezoelectric materials and structures. Therefore, the proposed electrical mixed-mode fatigue crack propagation model provides a reference for predicting the mixed-mode fatigue crack propagation behavior and fatigue life of piezoelectric structures under electric fatigue loading.展开更多
We obtain the global weighted estimates for Jacobian J(x,f) and its subdeterminants, as well as the components of K-quasiconformal mappings in L^p (μ)-averaging domains. To develop these estimates, both local and...We obtain the global weighted estimates for Jacobian J(x,f) and its subdeterminants, as well as the components of K-quasiconformal mappings in L^p (μ)-averaging domains. To develop these estimates, both local and global weighted Ponincaré inequalities for differential forms are established.展开更多
In this paper,we study the representation of linear operator on but abandom the Radon-Nikodym property and give a necessary and sufficient condition for representability of linear operator on by integral.
In freeform surface modelling, developable surfaces have much application value. But, in 3D space, there is not always a regular developable surface which interpolates the given boundary of an arbitrary piecewise smoo...In freeform surface modelling, developable surfaces have much application value. But, in 3D space, there is not always a regular developable surface which interpolates the given boundary of an arbitrary piecewise smooth closed curve. In this paper, tensor product Bézier surfaces interpolating the closed curves are determined and the resulting surface is a minimum of the functional defined by the L2-integral norm of the Gaussian curvature. The Gaussian curvature of the surfaces is minimized by the method of solving nonlinear optimization problems. An improved approach trust-region form method is proposed. A simple application example is also given.展开更多
Let D be an integral domain with quotient field K,D be the integral closure of D in K,and D^[w] be the ω-integral closure of D in K;so D ■ D^[w],and equality holds when D is Noetherian or dim(D)=1.The Mori-Nagata th...Let D be an integral domain with quotient field K,D be the integral closure of D in K,and D^[w] be the ω-integral closure of D in K;so D ■ D^[w],and equality holds when D is Noetherian or dim(D)=1.The Mori-Nagata theorem states that if D is Noetherian,then D is a Krull domain;it has also been investigated when D is a Dedekind domain.We study integral domains D such that D^[w] is a Krull domain.We also provide an example of an integral domain D such that D ■ D ■ D^[w],t-dim(D)=1,D is a Priifer multiplication domain with v-dim(D)=2,and D^[w] is a UFD.展开更多
In this paper, we establish some Rosenthal type inequalities for maximum partial sums of asymptotically almost negatively associated random variables, which extend the corresponding results for negatively associated r...In this paper, we establish some Rosenthal type inequalities for maximum partial sums of asymptotically almost negatively associated random variables, which extend the corresponding results for negatively associated random variables. As applications of these inequalities, by employing the notions of residual Cesàro α-integrability and strong residual Cesàro α-integrability, we derive some results on Lp convergence where 1 < p < 2 and complete convergence. In addition, we estimate the rate of convergence in Marcinkiewicz-Zygmund strong law for partial sums of identically distributed random variables.展开更多
基金Project supported by the National Natural Science Foundation of China(No.19472053)the Doctorate Foundation of Xi'an Jiaotong University(No.DFXJU2000-15).
文摘The J_2-integral induced from the interface of bimaterial solids(J_2^(interface))is stud- ied by numerical method.First,the effect on the J_2-integral induced from the interface is very significant in bimaterial solids,which is inherently related to that induced from the subinterface cracks.Moreover,it can be concluded that either the first or the second component of the J_k- vector is always equal to zero when the contour encloses both the cracks and the whole interface in bimaterial solids.Secondly,it can also be concluded that the interface does produce significant effect on the J_2-integral induced from the subinterface cracks(J_2^(sub))in bimaterial solids.This effect depends on the geometry of the crack arrangement,which is corresponding to the different interaction effect among the cracks and the interface.Moreover,the interface effect on the J_2^(sub) can be neglected when the distance from the crack center to the interface is large enough,which reveals that the bimaterial solids can be regarded as homogenous solids in fracture analysis when the subinterface crack is far enough from the interface.Three examples are given in this paper.
文摘In this paper we prove in a new way, the well known result, that Fermat’s equation a<sup>4</sup> + b<sup>4</sup> = c<sup>4</sup>, is not solvable in ℕ , when abc≠0 . To show this result, it suffices to prove that: ( F 0 ): a 1 4 + ( 2 s b 1 ) 4 = c 1 4 , is not solvable in ℕ , (where a 1 , b 1 , c 1 ∈2ℕ+1 , pairwise primes, with necessarly 2≤s∈ℕ ). The key idea of our proof is to show that if (F<sub>0</sub>) holds, then there exist α 2 , β 2 , γ 2 ∈2ℕ+1 , such that ( F 1 ): α 2 4 + ( 2 s−1 β 2 ) 4 = γ 2 4 , holds too. From where, one conclude that it is not possible, because if we choose the quantity 2 ≤ s, as minimal in value among all the solutions of ( F 0 ) , then ( α 2 ,2 s−1 β 2 , γ 2 ) is also a solution of Fermat’s type, but with 2≤s−1<s , witch is absurd. To reach such a result, we suppose first that (F<sub>0</sub>) is solvable in ( a 1 ,2 s b 1 , c 1 ) , s ≥ 2 like above;afterwards, proceeding with “Pythagorician divisors”, we creat the notions of “Fermat’s b-absolute divisors”: ( d b , d ′ b ) which it uses hereafter. Then to conclude our proof, we establish the following main theorem: there is an equivalence between (i) and (ii): (i) (F<sub>0</sub>): a 1 4 + ( 2 s b 1 ) 4 = c 1 4 , is solvable in ℕ , with 2≤s∈ℕ , ( a 1 , b 1 , c 1 )∈ ( 2ℕ+1 ) 3 , coprime in pairs. (ii) ∃( a 1 , b 1 , c 1 )∈ ( 2ℕ+1 ) 3 , coprime in pairs, for wich: ∃( b ′ 2 , b 2 , b ″ 2 )∈ ( 2ℕ+1 ) 3 coprime in pairs, and 2≤s∈ℕ , checking b 1 = b ′ 2 b 2 b ″ 2 , and such that for notations: S=s−λ( s−1 ) , with λ∈{ 0,1 } defined by c 1 − a 1 2 ≡λ( mod2 ) , d b =gcd( 2 s b 1 , c 1 − a 1 )= 2 S b 2 and d ′ b = 2 s−S b ′ 2 = 2 s B 2 d b , where ( 2 s B 2 ) 2 =gcd( b 1 2 , c 1 2 − a 1 2 ) , the following system is checked: { c 1 − a 1 = d b 4 2 2+λ = 2 2−λ ( 2 S−1 b 2 ) 4 c 1 + a 1 = 2 1+λ d ′ b 4 = 2 1+λ ( 2 s−S b ′ 2 ) 4 c 1 2 + a 1 2 =2 b ″ 2 4;and this system implies: ( b 1−λ,2 4 ) 2 + ( 2 4s−3 b λ,2 4 ) 2 = ( b ″ 2 2 ) 2;where: ( b 1−λ,2 , b λ,2 , b ″ 2 )={ ( b ′ 2 , b 2 , b ″ 2 ) if λ=0 ( b 2 , b ′ 2 , b ″ 2 ) if λ=1;From where, it is quite easy to conclude, following the method explained above, and which thus closes, part I, of this article. .
基金supported by the National Natural Science Foundation of China(No.12172270)the Fundamental Research Funds for the Central Universities in China.
文摘The electric fatigue load has a significant effect on the crack propagation behavior and failure life of piezoelectric materials and devices. In this paper, an electrical mixed-mode fatigue crack propagation model for piezoelectric materials is proposed based on the piezoelectric J_(k)-integral theory. The crack initiation, propagation, and life prediction criteria of piezoelectric materials under electric fatigue loading are given by this model, and the finite element simulation model is established to study the electrical mixed-mode crack propagation behavior of piezoelectric structures. Meanwhile, the electrical mixed-mode fatigue crack propagation model is applied to the fatigue crack propagation behavior of a piezoelectric typical defective structure, the crack–hole interference model. The mixed-mode crack propagation, fatigue life, and the interference behavior between the crack and hole at various hole locations of the crack–hole interference model are well recognized by this model. The crack propagation behavior under different electrical load intensities is also considered. The results show that the hole in front of the crack tip inhibits crack propagation to a certain extent, and the strength of electrical load affects the fatigue life of piezoelectric materials and structures. Therefore, the proposed electrical mixed-mode fatigue crack propagation model provides a reference for predicting the mixed-mode fatigue crack propagation behavior and fatigue life of piezoelectric structures under electric fatigue loading.
文摘We obtain the global weighted estimates for Jacobian J(x,f) and its subdeterminants, as well as the components of K-quasiconformal mappings in L^p (μ)-averaging domains. To develop these estimates, both local and global weighted Ponincaré inequalities for differential forms are established.
文摘In this paper,we study the representation of linear operator on but abandom the Radon-Nikodym property and give a necessary and sufficient condition for representability of linear operator on by integral.
文摘In freeform surface modelling, developable surfaces have much application value. But, in 3D space, there is not always a regular developable surface which interpolates the given boundary of an arbitrary piecewise smooth closed curve. In this paper, tensor product Bézier surfaces interpolating the closed curves are determined and the resulting surface is a minimum of the functional defined by the L2-integral norm of the Gaussian curvature. The Gaussian curvature of the surfaces is minimized by the method of solving nonlinear optimization problems. An improved approach trust-region form method is proposed. A simple application example is also given.
基金supported by the Academic Research Fund of Hoseo University in 2017(no.2017-0047).
文摘Let D be an integral domain with quotient field K,D be the integral closure of D in K,and D^[w] be the ω-integral closure of D in K;so D ■ D^[w],and equality holds when D is Noetherian or dim(D)=1.The Mori-Nagata theorem states that if D is Noetherian,then D is a Krull domain;it has also been investigated when D is a Dedekind domain.We study integral domains D such that D^[w] is a Krull domain.We also provide an example of an integral domain D such that D ■ D ■ D^[w],t-dim(D)=1,D is a Priifer multiplication domain with v-dim(D)=2,and D^[w] is a UFD.
基金supported by National Natural Science Foundation of China (Grant No.10871217) the SCR of Chongqing Municipal Education Commission (Grant No.KJ090703)
文摘In this paper, we establish some Rosenthal type inequalities for maximum partial sums of asymptotically almost negatively associated random variables, which extend the corresponding results for negatively associated random variables. As applications of these inequalities, by employing the notions of residual Cesàro α-integrability and strong residual Cesàro α-integrability, we derive some results on Lp convergence where 1 < p < 2 and complete convergence. In addition, we estimate the rate of convergence in Marcinkiewicz-Zygmund strong law for partial sums of identically distributed random variables.
基金J.Koolen was partially supported by the National Natural Science Foundation of China(Grants No.11471009 and No.11671376)by the fund Anhui Initiative in Quantum Information Technologies(No.AHY150000)Q.Q.Yang was partially supported by the China Scholarship Council(No.201806340049)when she was studying at Tohoku University as a joint Ph.D.student.
文摘In this note we give several problems and conjectures on graphs with fixed smallest eigenvalue.