This paper focuses on synchronization of fractionalorder complex dynamical networks with decentralized adaptive coupling.Based on local information among neighboring nodes,two fractional-order decentralized adaptive s...This paper focuses on synchronization of fractionalorder complex dynamical networks with decentralized adaptive coupling.Based on local information among neighboring nodes,two fractional-order decentralized adaptive strategies are designed to tune all or only a small fraction of the coupling gains respectively.By constructing quadratic Lyapunov functions and utilizing fractional inequality techniques,Mittag-Leffler function,and Laplace transform,two sufficient conditions are derived for reaching network synchronization by using the proposed adaptive laws.Finally,two numerical examples are given to verify the theoretical results.展开更多
The purpose of this study is to design a fractional-order super-twisting sliding-mode controller for a class of nonlinear fractionalorder systems.The proposed method has the following advantages:(1)Lyapunov stability ...The purpose of this study is to design a fractional-order super-twisting sliding-mode controller for a class of nonlinear fractionalorder systems.The proposed method has the following advantages:(1)Lyapunov stability of the overall closed-loop system,(2)output tracking error’s convergence to zero,(3)robustness against external uncertainties and disturbances,and(4)reduction of the chattering phenomenon.To investigate the performance of the method,the proposed controller is applied to an autonomous underwater robot and Lorenz chaotic system.Finally,a simulation is performed to verify the potential of the proposed method.展开更多
In this paper,we formulate and analyze a new fractional-order Logistic model with feedback control,which is different from a recognized mathematical model proposed in our very recent work.Asymptotic stability of the p...In this paper,we formulate and analyze a new fractional-order Logistic model with feedback control,which is different from a recognized mathematical model proposed in our very recent work.Asymptotic stability of the proposed model and its numerical solutions are studied rigorously.By using the Lyapunov direct method for fractional dynamical systems and a suitable Lyapunov function,we show that a unique positive equilibrium point of the new model is asymptotically stable.As an important consequence of this,we obtain a new mathematical model in which the feedback control variables only change the position of the unique positive equilibrium point of the original model but retain its asymptotic stability.Furthermore,we construct unconditionally positive nonstandard finite difference(NSFD)schemes for the proposed model using the Mickens’methodology.It is worth noting that the constructed NSFD schemes not only preserve the positivity but also provide reliable numerical solutions that correctly reflect the dynamics of the new fractional-order model.Finally,we report some numerical examples to support and illustrate the theoretical results.The results indicate that there is a good agreement between the theoretical results and numerical ones.展开更多
基金supported by the"Chunhui Plan"Cooperative Research for Ministry of Education(Z2016133)the Open Research Fund of Key Laboratory of Automobile Engineering(Xihua University)+3 种基金Sichuan Province(szjj2016-017)the National Natural Science Foundation of China(51177137)the Scientific Research Foundation of the Education Department of Sichuan Province(16ZB0163)the China Scholarship Council
文摘This paper focuses on synchronization of fractionalorder complex dynamical networks with decentralized adaptive coupling.Based on local information among neighboring nodes,two fractional-order decentralized adaptive strategies are designed to tune all or only a small fraction of the coupling gains respectively.By constructing quadratic Lyapunov functions and utilizing fractional inequality techniques,Mittag-Leffler function,and Laplace transform,two sufficient conditions are derived for reaching network synchronization by using the proposed adaptive laws.Finally,two numerical examples are given to verify the theoretical results.
文摘The purpose of this study is to design a fractional-order super-twisting sliding-mode controller for a class of nonlinear fractionalorder systems.The proposed method has the following advantages:(1)Lyapunov stability of the overall closed-loop system,(2)output tracking error’s convergence to zero,(3)robustness against external uncertainties and disturbances,and(4)reduction of the chattering phenomenon.To investigate the performance of the method,the proposed controller is applied to an autonomous underwater robot and Lorenz chaotic system.Finally,a simulation is performed to verify the potential of the proposed method.
文摘In this paper,we formulate and analyze a new fractional-order Logistic model with feedback control,which is different from a recognized mathematical model proposed in our very recent work.Asymptotic stability of the proposed model and its numerical solutions are studied rigorously.By using the Lyapunov direct method for fractional dynamical systems and a suitable Lyapunov function,we show that a unique positive equilibrium point of the new model is asymptotically stable.As an important consequence of this,we obtain a new mathematical model in which the feedback control variables only change the position of the unique positive equilibrium point of the original model but retain its asymptotic stability.Furthermore,we construct unconditionally positive nonstandard finite difference(NSFD)schemes for the proposed model using the Mickens’methodology.It is worth noting that the constructed NSFD schemes not only preserve the positivity but also provide reliable numerical solutions that correctly reflect the dynamics of the new fractional-order model.Finally,we report some numerical examples to support and illustrate the theoretical results.The results indicate that there is a good agreement between the theoretical results and numerical ones.