期刊文献+
共找到771,866篇文章
< 1 2 250 >
每页显示 20 50 100
Intelligent Fractional-Order Controller for SMES Systems in Renewable Energy-Based Microgrid
1
作者 Aadel M.Alatwi Abualkasim Bakeer +3 位作者 Sherif A.Zaid Ibrahem E.Atawi Hani Albalawi Ahmed M.Kassem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1807-1830,共24页
An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.Howe... An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES. 展开更多
关键词 fractional-order proportional integral(FOPI) intelligent controller renewable energy resources superconducting magnetic energy storage OPTIMIZATION
下载PDF
A Fractional-Order Ultra-Local Model-Based Adaptive Neural Network Sliding Mode Control of n-DOF Upper-Limb Exoskeleton With Input Deadzone
2
作者 Dingxin He HaoPing Wang +1 位作者 Yang Tian Yida Guo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期760-781,共22页
This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Co... This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Considering the model complexity and input deadzone,a fractional-order ultra-local model is proposed to formulate the original dynamic system for simple controller design.Firstly,the control gain of ultra-local model is considered as a constant.The fractional-order sliding mode technique is designed to stabilize the closed-loop system,while fractional-order time-delay estimation is combined with neural network to estimate the lumped disturbance.Correspondingly,a fractional-order ultra-local model-based neural network sliding mode controller(FO-NNSMC) is proposed.Secondly,to avoid disadvantageous effect of improper gain selection on the control performance,the control gain of ultra-local model is considered as an unknown parameter.Then,the Nussbaum technique is introduced into the FO-NNSMC to deal with the stability problem with unknown gain.Correspondingly,a fractional-order ultra-local model-based adaptive neural network sliding mode controller(FO-ANNSMC) is proposed.Moreover,the stability analysis of the closed-loop system with the proposed method is presented by using the Lyapunov theory.Finally,with the co-simulations on virtual prototype of 7-DOF iReHave upper-limb exoskeleton and experiments on 2-DOF upper-limb exoskeleton,the obtained compared results illustrate the effectiveness and superiority of the proposed method. 展开更多
关键词 Adaptive control input deadzone model-free control n-DOF upper-limb exoskeleton neural network
下载PDF
True-temperature inversion algorithm for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization
3
作者 Mei Liang Zhuo Sun +3 位作者 Jiasong Liu Yongsheng Wang Lei Liang Long Zhang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期55-62,共8页
Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order... Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order calculus has the inherent advantage of easily jumping out of local extreme values;here,it is introduced into the particle-swarm algorithm to invert the true temperature.An improved adaptive-adjustment mechanism is applied to automatically adjust the current velocity order of the particles and update their velocity and position values,increasing the accuracy of the true temperature values.The results of simulations using the proposed algorithm were compared with three algorithms using typical emissivity models:the internal penalty function algorithm,the optimization function(fmincon)algorithm,and the conventional particle-swarm optimization algorithm.The results show that the proposed algorithm has good accuracy for true-temperature inversion.Actual experimental results from a rocket-motor plume were used to demonstrate that the true-temperature inversion results of this algorithm are in good agreement with the theoretical true-temperature values. 展开更多
关键词 fractional-order particle swarm True-temperature inversion algorithm Multi-wavelength pyrometer
下载PDF
On-Chip Micro Temperature Controllers Based on Freestanding Thermoelectric Nano Films for Low-Power Electronics
4
作者 Qun Jin Tianxiao Guo +4 位作者 Nicolas Perez Nianjun Yang Xin Jiang Kornelius Nielsch Heiko Reith 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期98-108,共11页
Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity ... Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics. 展开更多
关键词 Temperature control Low-power electronics On-chip micro temperature controller Freestanding thermoelectric nano films Temperature-sensitive components
下载PDF
Laboratory Implementation of Direct Torque Controller based Speed Loop Pseudo Derivative Feedforward Controller for PMSM Drive
5
作者 Prabhakaran Koothu Kesavan Umashankar Subramaniam Dhafer J.Almakhles 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期12-21,共10页
This paper,evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward(PDFF)controller-based direct torque controller(DTC)for a PMSM drive against the performance of existing PI speed controller-... This paper,evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward(PDFF)controller-based direct torque controller(DTC)for a PMSM drive against the performance of existing PI speed controller-based DTC and hysteresis current controller(HCC).The proposed PDFF-based speed regulator effectively reduces oscillation and overshoot associated with rotor angular speed,electromagnetic torque,and stator current.Two case studies,one using forward-to-reverse motoring operation and the other involving reverse-to-forward braking operation,has been validated to show the effectiveness of the proposed control strategy.The proposed controller's superior performance is demonstrated through experimental verification utilizing an FPGA controller for a 1.5 kW PMSM drive laboratory prototype. 展开更多
关键词 Direct torque control Pseudo derivative feedforward controller Permanent magnet synchronous motor(PMSM)
下载PDF
Contact detumbling toward a nutating target through deformable effectors and prescribed performance controller
6
作者 ZANG Yue ZHANG Yao +2 位作者 HU Quan LI Mou CHEN Yujun 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期753-768,共16页
Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nut... Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nutating target. A dual-arm robotic system installed with the deformable end-effectors is modeled and the movement of the end-tips is analyzed. The complex operation of the contact toward a nutating target places strict requirements on control accuracy and controller robustness. Thus, an improvement of the tracking error transformation is proposed and an adaptive sliding mode controller with prescribed performance is designed to guarantee the fast and precise motion of the effector during the contact detumbling.Finally, by employing the proposed effector and the controller,numerical simulations are carried out to verify the effectiveness and efficiency of the contact detumbling toward a nutating target. 展开更多
关键词 nutating target contact detumbling dual-arm space robot deformable end-effector prescribed performance controller
下载PDF
BIFURCATION CONTROL FOR A FRACTIONAL-ORDER DELAYED SEIR RUMOR SPREADING MODEL WITH INCOMMENSURATE ORDERS
7
作者 叶茂林 蒋海军 《Acta Mathematica Scientia》 SCIE CSCD 2023年第6期2662-2682,共21页
A fractional-order delayed SEIR rumor spreading model with a nonlinear incidence function is established in this paper,and a novel strategy to control the bifurcation of this model is proposed.First,Hopf bifurcation i... A fractional-order delayed SEIR rumor spreading model with a nonlinear incidence function is established in this paper,and a novel strategy to control the bifurcation of this model is proposed.First,Hopf bifurcation is investigated by considering time delay as bifurcation parameter for the system without a feedback controller.Then,a state feedback controller is designed to control the occurrence of bifurcation in advance or to delay it by changing the parameters of the controller.Finally,in order to verify the theoretical results,some numerical simulations are given. 展开更多
关键词 rumor spreading fractional-order time delay bifurcation control
下载PDF
Quasi-synchronization of fractional-order complex networks with random coupling via quantized control
8
作者 张红伟 程然 丁大为 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期355-363,共9页
We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a n... We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a new quantized feedback controller, which can make all nodes of complex networks quasi-synchronization and eliminate the disturbance of random coupling in the system state, is designed under non-delay conditions. Secondly, we extend the theoretical results under non-delay conditions to time-varying delay conditions and design another form of quantization feedback controller to ensure that the network achieves quasi-synchronization. Furthermore, the error bound of quasi-synchronization is obtained.Finally, we verify the accuracy of our results using two numerical simulation examples. 展开更多
关键词 complex network fractional-order random coupling time-varying delay QUASI-SYNCHRONIZATION quantized control
下载PDF
Robust Stability Analysis of Smith Predictor Based Interval Fractional-Order Control Systems:A Case Study in Level Control Process
9
作者 Majid Ghorbani Mahsan Tavakoli-Kakhki +1 位作者 Aleksei Tepljakov Eduard Petlenkov 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第3期762-780,共19页
The robust stability study of the classic Smith predictor-based control system for uncertain fractional-order plants with interval time delays and interval coefficients is the emphasis of this work.Interval uncertaint... The robust stability study of the classic Smith predictor-based control system for uncertain fractional-order plants with interval time delays and interval coefficients is the emphasis of this work.Interval uncertainties are a type of parametric uncertainties that cannot be avoided when modeling real-world plants.Also,in the considered Smith predictor control structure it is supposed that the controller is a fractional-order proportional integral derivative(FOPID)controller.To the best of the authors'knowledge,no method has been developed until now to analyze the robust stability of a Smith predictor based fractional-order control system in the presence of the simultaneous uncertainties in gain,time-constants,and time delay.The three primary contributions of this study are as follows:ⅰ)a set of necessary and sufficient conditions is constructed using a graphical method to examine the robust stability of a Smith predictor-based fractionalorder control system—the proposed method explicitly determines whether or not the FOPID controller can robustly stabilize the Smith predictor-based fractional-order control system;ⅱ)an auxiliary function as a robust stability testing function is presented to reduce the computational complexity of the robust stability analysis;andⅲ)two auxiliary functions are proposed to achieve the control requirements on the disturbance rejection and the noise reduction.Finally,four numerical examples and an experimental verification are presented in this study to demonstrate the efficacy and significance of the suggested technique. 展开更多
关键词 Interval uncertainty FOPID controller fractional-order systems robust stability analysis smith predictor
下载PDF
High-speed train cooperativecontrol based on fractional-ordersliding mode adaptive algorithm
10
作者 Junting Lin Mingjun Ni Huadian Liang 《Railway Sciences》 2023年第1期84-100,共17页
Purpose–This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block... Purpose–This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block system,so as to improve the tracking efficiency and collision avoidance performance.Design/methodology/approach–The mathematical model of information interaction between trains is established based on algebraic graph theory,so that the train can obtain the state information of adjacent trains,and then realize the distributed cooperative control of each train.In the controller design,the sliding mode control and fractional calculus are combined to avoid the discontinuous switching phenomenon,so as to suppress the chattering of sliding mode control,and a parameter adaptive law is constructed to approximate the time-varying operating resistance coefficient.Findings–The simulation results show that compared with proportional integral derivative(PID)control and ordinary sliding mode control,the control accuracy of the proposed algorithm in terms of speed is,respectively,improved by 25%and 75%.The error frequency and fluctuation range of the proposed algorithm are reduced in the position error control,the error value tends to 0,and the operation trend tends to be consistent.Therefore,the control method can improve the control accuracy of the system and prove that it has strong immunity.Originality/value–The algorithm can reduce the influence of external interference in the actual operating environment,realize efficient and stable tracking of trains,and ensure the safety of train control. 展开更多
关键词 High-speed trains Sliding mode control fractional-order differentiation Adaptive law Cooperative control
下载PDF
Synchronization of uncertain fractional-order chaotic systems with disturbance based on a fractional terminal sliding mode controller 被引量:3
11
作者 王东风 张金营 王晓燕 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期178-184,共7页
This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional... This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme. 展开更多
关键词 fractional-order chaotic system SYNCHRONIZATION terminal sliding mode control UNCERTAINTY DISTURBANCE
下载PDF
Comparison between two different sliding mode controllers for a fractional-order unified chaotic system 被引量:1
12
作者 齐冬莲 王乔 杨捷 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期150-158,共9页
Two different sliding mode controllers for a fractional order unified chaotic system are presented. The controller for an integer-order unified chaotic system is substituted directly into the fractional-order counterp... Two different sliding mode controllers for a fractional order unified chaotic system are presented. The controller for an integer-order unified chaotic system is substituted directly into the fractional-order counterpart system, and the fractional-order system can be made asymptotically stable by this controller. By proving the existence of a sliding manifold containing fractional integral, the controller for a fractional-order system is obtained, which can stabilize it. A comparison between these different methods shows that the performance of a sliding mode controller with a fractional integral is more robust than the other for controlling a fractional order unified chaotic system. 展开更多
关键词 unified chaotic system fractional-order system sliding mode control
下载PDF
Improved quantum bacterial foraging algorithm for tuning parameters of fractional-order PID controller 被引量:8
13
作者 LIU Lu SHAN Liang +2 位作者 DAI Yuewei LIU Chenglin QI Zhidong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期166-175,共10页
The quantum bacterial foraging optimization(QBFO)algorithm has the characteristics of strong robustness and global searching ability. In the classical QBFO algorithm, the rotation angle updated by the rotation gate is... The quantum bacterial foraging optimization(QBFO)algorithm has the characteristics of strong robustness and global searching ability. In the classical QBFO algorithm, the rotation angle updated by the rotation gate is discrete and constant,which cannot affect the situation of the solution space and limit the diversity of bacterial population. In this paper, an improved QBFO(IQBFO) algorithm is proposed, which can adaptively make the quantum rotation angle continuously updated and enhance the global search ability. In the initialization process, the modified probability of the optimal rotation angle is introduced to avoid the existence of invariant solutions. The modified operator of probability amplitude is adopted to further increase the population diversity.The tests based on benchmark functions verify the effectiveness of the proposed algorithm. Moreover, compared with the integerorder PID controller, the fractional-order proportion integration differentiation(PID) controller increases the complexity of the system with better flexibility and robustness. Thus the fractional-order PID controller is applied to the servo system. The tuning results of PID parameters of the fractional-order servo system show that the proposed algorithm has a good performance in tuning the PID parameters of the fractional-order servo system. 展开更多
关键词 bacterial foraging algorithm fractional-order quantum rotation gate proportion integration differentiation(PID) servo system
下载PDF
Synthesis of Fractional-order PI Controllers and Fractional-order Filters for Industrial Electrical Drives 被引量:1
14
作者 Paolo Lino Guido Maione +2 位作者 Silvio Stasi Fabrizio Padula Antonio Visioli 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第1期58-69,共12页
This paper introduces an electrical drives control architecture combining a fractional-order controller and a setpoint pre-filter. The former is based on a fractional-order proportional-integral(PI) unit, with a non-i... This paper introduces an electrical drives control architecture combining a fractional-order controller and a setpoint pre-filter. The former is based on a fractional-order proportional-integral(PI) unit, with a non-integer order integral action, while the latter can be of integer or non-integer type. To satisfy robustness and dynamic performance specifications, the feedback controller is designed by a loop-shaping technique in the frequency domain. In particular, optimality of the feedback system is pursued to achieve input-output tracking. The setpoint pre-filter is designed by a dynamic inversion technique minimizing the difference between the ideal synthesized command signal(i.e., a smooth monotonic response) and the prefilter step response. Experimental tests validate the methodology and compare the performance of the proposed architecture with well-established control schemes that employ the classical PIbased symmetrical optimum method with a smoothing pre-filter. 展开更多
关键词 Dynamic inversion electrical drives fractionalorder PI controller LOOP-SHAPING set-point pre-filter
下载PDF
A single adaptive controller with one variable for synchronization of fractional-order chaotic systems
15
作者 张若洵 杨世平 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第8期96-102,共7页
In this paper we investigate the synchronization of a class of three-dimensional fractional-order chaotic systems. Based on the Lyapunov stability theory and adaptive control technique, a single adaptive-feedback cont... In this paper we investigate the synchronization of a class of three-dimensional fractional-order chaotic systems. Based on the Lyapunov stability theory and adaptive control technique, a single adaptive-feedback controller is developed to synchronize a class of fractional-order chaotic systems. The presented controller which only contains a single driving variable is simple both in design and in implementation. Numerical simulation and circuit experimental results for fractional-order chaotic system are provided to illustrate the effectiveness of the proposed scheme. 展开更多
关键词 adaptive control fractional-order chaotic system a single controller
下载PDF
Modified adaptive controller for synchronization of incommensurate fractional-order chaotic systems
16
《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期126-130,共5页
We investigate the synchronization of a class of incommensurate fractional-order chaotic systems, and propose a modified adaptive controller for fractional-order chaos synchronization based on the Lyapunov stability t... We investigate the synchronization of a class of incommensurate fractional-order chaotic systems, and propose a modified adaptive controller for fractional-order chaos synchronization based on the Lyapunov stability theory, the fractional order differential inequality, and the adaptive strategy. This synchronization approach is simple, universal, and theoretically rigorous. It enables the synchronization of O fractional-order chaotic systems to be achieved in a systematic way. The simulation results for the fractional-order Qi chaotic system and the four-wing hyperchaotic system are provided to illustrate the effectiveness of the proposed scheme. 展开更多
关键词 SYNCHRONIZATION modified adaptive controller incommensurate fractional-order chaotic system
下载PDF
Optimal Tuning of FOPID-Like Fuzzy Controller for High-Performance Fractional-Order Systems
17
作者 Ahmed M.Nassef Hegazy Rezk 《Computers, Materials & Continua》 SCIE EI 2022年第1期171-180,共10页
This paper addresses improvements in fractional order(FO)system performance.Although the classical proportional-integral-derivative(PID)-like fuzzy controller can provide adequate results for both transient and steady... This paper addresses improvements in fractional order(FO)system performance.Although the classical proportional-integral-derivative(PID)-like fuzzy controller can provide adequate results for both transient and steady-state responses in both linear and nonlinear systems,the FOPID fuzzy controller has been proven to provide better results.This high performance was obtained thanks to the combinative benefits of FO and fuzzy-logic techniques.This paper describes how the optimal gains and FO parameters of the FOPID controller were obtained by the use of a modern optimizer,social spider optimization,in order to improve the response of fractional dynamical systems.This group of systems had usually produced multimodal error surfaces/functions that occasionally had many variant local minima.The integral time of absolute error(ITAE)used in this study was the error function.The results showed that the strategy adopted produced superior performance regarding the lowest ITAE value.It reached a value of 88.22 while the best value obtained in previous work was 98.87.A further comparison between the current work and previous studies concerning transient-analysis factors of the model’s response showed that the strategy proposed was the only one that was able to produce fast rise time,low-percentage overshoot,and very small steady-state error.However,the other strategies were good for one factor,but not for the others. 展开更多
关键词 Fuzzy-logic control fractional-order systems parameter estimation OPTIMIZATION
下载PDF
Synchronization between a novel class of fractional-order and integer-order chaotic systems via a sliding mode controller
18
作者 陈帝伊 张润凡 +1 位作者 马孝义 王娟 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期135-140,共6页
In order to figure out the dynamical behaviour of a fractional-order chaotic system and its relation to an integer- order chaotic system, in this paper we investigate the synchronization between a class of fractional-... In order to figure out the dynamical behaviour of a fractional-order chaotic system and its relation to an integer- order chaotic system, in this paper we investigate the synchronization between a class of fractional-order chaotic systems and integer-order chaotic systems via sliding mode control method. Stability analysis is performed for the proposed method based on stability theorems in the fractional calculus. Moreover, three typical examples are carried out to show that the synchronization between fractional-order chaotic systems and integer-orders chaotic systems can be achieved. Our theoretical findings are supported by numerical simulation results. Finally, results from numerical computations and theoretical analysis are demonstrated to be a perfect bridge between fractional-order chaotic systems and integer-order chaotic systems. 展开更多
关键词 SYNCHRONIZATION fractional-order system integer-order chaotic system sliding mode
下载PDF
Analysis of the effect on control systems of order variation for fractional-orderPI~λD~μcontrollers 被引量:1
19
作者 曾庆山 曹广益 朱新坚 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第3期336-341,共6页
This paper is concerned with fractional-order PI^λ D^u controllers. The definitions and properties of fractional calculus are introdueed. The mathematical descriptions of a fraetional-order controller and fractionalo... This paper is concerned with fractional-order PI^λ D^u controllers. The definitions and properties of fractional calculus are introdueed. The mathematical descriptions of a fraetional-order controller and fractionalorder control systems are outlined. The effects on control systems of order variation for fractional-order PI^λ D^u controllers are investigated by qualitative analysis and simulation. The conclusions and simulation examples are given. The results show the fraetional-order PI^λ D^u controller is not sensitive to variation of its order. 展开更多
关键词 分数微积分 分数次序控制系统 时序变化 PI^λ控制器
下载PDF
Control of a fractional chaotic system based on a fractional-order resistor-capacitor filter
20
作者 张路 邓科 罗懋康 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期133-141,共9页
We present a new fractional-order resistor-capacitor controller and a novel control method based on the fractional- order controller to control an arbitrary three-dimensional fractional chaotic system. The proposed co... We present a new fractional-order resistor-capacitor controller and a novel control method based on the fractional- order controller to control an arbitrary three-dimensional fractional chaotic system. The proposed control method is simple, robust, and theoretically rigorous, and its anti-noise performance is satisfactory. Numerical simulations are given for several fractional chaotic systems to verify the effectiveness and the universality of the proposed control method. 展开更多
关键词 fractional chaotic system chaos control fractional-order controller resistor capacitorfilter
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部