Delayed coking is an important process in refinery to convert heavy residue oils from crude distillation units (CDUs) and fluid catalytic cracking units (FCCUs) into dry gas, liquefied petroleum gas (LPG), gasol...Delayed coking is an important process in refinery to convert heavy residue oils from crude distillation units (CDUs) and fluid catalytic cracking units (FCCUs) into dry gas, liquefied petroleum gas (LPG), gasoline, die- sel, gas oils and cokes. The main fractionator, separating superheating reaction vapors from the coke drums into lighter oil products, involves a de-superheating section and a rectifying section, and couldn't be simulated as a whole column directly because of non-eouilibrium in the de-suoerheatine section. It is verv imoortant to correctlv simulate the main fractionator for operational parameter and energy-use optimization of delayed cokers. This paper discusses the principle of de-superheating processes, and then proposes a new simulation strategy. Some key issues such as composition prediction of the reaction vapors, selection of thermodynamic methods, estimation of tray efficiency, etc. are discussed. The proposed simulation approach is applied to two industrial delayed cokers with typical technological processes in a Chinese refinery by using PRO/II. The simulation results obtained are well consistent with the actual operation data, which indicates that the presented approach is suitable to simulate the main fraction- ators of delayed cokers or other distillation columns consisting of de-superheating sections and rectifying sections.展开更多
Exergy indicates the maximal energy that can do work effectively. Different from optimization of product quality or calculation of generic energy conservation in most previous studies, the application of exergy analys...Exergy indicates the maximal energy that can do work effectively. Different from optimization of product quality or calculation of generic energy conservation in most previous studies, the application of exergy analysis and exergy cost optimization in petrochemical industry is of great economic and environmental significance. Based on the main fractionator in Jiujiang Petrochemical Complex No. 2 FCCU, an enhanced exergy cost optimization under different operating conditions by adjusting set points of temperature and valves opening degree for flow control is studied in this paper in order to reduce exergy cost and improve the quality of energy. A steadystate optimization algorithm to enhance exergy availability and an objective function comprehensively considering exergy loss are proposed. On the basis of ensuring the quality of petroleum products, the economic benefits can be improved by optimizing the controllable variables due to the fact that exergy cost is decreased.展开更多
BACKGROUND Current osteoarthritis(OA)treatments focus on symptom relief without addressing the underlying disease process.In regenerative medicine,current treatments have limitations.In regenerative medicine,more rese...BACKGROUND Current osteoarthritis(OA)treatments focus on symptom relief without addressing the underlying disease process.In regenerative medicine,current treatments have limitations.In regenerative medicine,more research is needed for intra-articular stromal vascular fraction(SVF)injections in OA,including dosage optimization,long-term efficacy,safety,comparisons with other treatments,and mechanism exploration.AIM To compare the efficacy of intra-articular SVF with corticosteroid(ICS)injections in patients with primary knee OA.METHODS The study included 50 patients with Kellgren-Lawrence grades II and III OA.Patients were randomly assigned(1:1)to receive either a single intra-articular SVF injection(group A)or a single intra-articular ICS(triamcinolone)(group B)injection.Patients were followed up at 1,3,6,12,and 24 months.Visual analog score(VAS)and International Knee Documentation Committee(IKDC)scores were administered before the procedure and at all followups.The safety of SVF in terms of adverse and severe adverse events was recorded.Statistical analysis was performed with SPSS Version 26.0,IBM Corp,Chicago,IL,United States.RESULTS Both groups had similar demographics and baseline clinical characteristics.Follow-up showed minor patient loss,resulting in 23 and 24 in groups A and B respectively.Group A experienced a notable reduction in pain,with VAS scores decreasing from 7.7 to 2.4 over 24 months,compared to a minor reduction from 7.8 to 6.2 in Group B.This difference in pain reduction in group A was statistically significant from the third month onwards.Additionally,Group A showed significant improvements in knee functionality,with IKDC scores rising from 33.4 to 83.10,whereas Group B saw a modest increase from 36.7 to 45.16.The improvement in Group A was statistically significant from 6 months and maintained through 24 months.CONCLUSION Our study demonstrated that intra-articular administration of SVF can lead to reduced pain and improved knee function in patients with primary knee OA.More adequately powered,multi-center,double-blinded,randomised clinical trials with longer follow-ups are needed to further establish safety and justify its clinical use.展开更多
BACKGROUND Left bundle branch pacing(LBBP)is a novel pacing modality of cardiac resynchronization therapy(CRT)that achieves more physiologic native ventricular activation than biventricular pacing(BiVP).AIM To explore...BACKGROUND Left bundle branch pacing(LBBP)is a novel pacing modality of cardiac resynchronization therapy(CRT)that achieves more physiologic native ventricular activation than biventricular pacing(BiVP).AIM To explore the validity of electromechanical resynchronization,clinical and echocardiographic response of LBBP-CRT.METHODS Systematic review and Meta-analysis were conducted in accordance with the standard guidelines as mentioned in detail in the methodology section.RESULTS In our analysis,the success rate of LBBP-CRT was determined to be 91.1%.LBBP CRT significantly shortened QRS duration,with significant improvement in echocardiographic parameters,including left ventricular ejection fraction,left ventricular end-diastolic diameter and left ventricular end-systolic diameter in comparison with BiVP-CRT.CONCLUSION A significant reduction in New York Heart Association class and B-type natriuretic peptide levels was also observed in the LBBP-CRT group vs BiVP-CRT group.Lastly,the LBBP-CRT cohort had a reduced pacing threshold at follow-up as compared to BiVP-CRT.展开更多
BACKGROUND Left ventricular(LV)remodeling and diastolic function in people with heart failure(HF)are correlated with iron status;however,the causality is uncertain.This Mendelian randomization(MR)study investigated th...BACKGROUND Left ventricular(LV)remodeling and diastolic function in people with heart failure(HF)are correlated with iron status;however,the causality is uncertain.This Mendelian randomization(MR)study investigated the bidirectional causal relationship between systemic iron parameters and LV structure and function in a preserved ejection fraction population.METHODS Transferrin saturation(TSAT),total iron binding capacity(TIBC),and serum iron and ferritin levels were extracted as instrumental variables for iron parameters from meta-analyses of public genome-wide association studies.Individuals without myocardial infarction history,HF,or LV ejection fraction(LVEF)<50%(n=16,923)in the UK Biobank Cardiovascular Magnetic Resonance Imaging Study constituted the outcome dataset.The dataset included LV end-diastolic volume,LV endsystolic volume,LV mass(LVM),and LVM-to-end-diastolic volume ratio(LVMVR).We used a two-sample bidirectional MR study with inverse variance weighting(IVW)as the primary analysis method and estimation methods using different algorithms to improve the robustness of the results.RESULTS In the IVW analysis,one standard deviation(SD)increased in TSAT significantly correlated with decreased LVMVR(β=-0.1365;95%confidence interval[CI]:-0.2092 to-0.0638;P=0.0002)after Bonferroni adjustment.Conversely,no significant relationships were observed between other iron and LV parameters.After Bonferroni correction,reverse MR analysis showed that one SD increase in LVEF significantly correlated with decreased TSAT(β=-0.0699;95%CI:-0.1087 to-0.0311;P=0.0004).No heterogeneity or pleiotropic effects evidence was observed in the analysis.CONCLUSIONS We demonstrated a causal relationship between TSAT and LV remodeling and function in a preserved ejection fraction population.展开更多
This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu...This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures.展开更多
Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB ...Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations.展开更多
Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlatio...Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices.展开更多
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona...Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.展开更多
This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectio...This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.展开更多
Background Protamination and condensation of sperm chromatin as well as DNA integrity play an essential role during fertilization and embryo development.In some mammals,like pigs,ejaculates are emitted in three separa...Background Protamination and condensation of sperm chromatin as well as DNA integrity play an essential role during fertilization and embryo development.In some mammals,like pigs,ejaculates are emitted in three separate fractions:pre-sperm,sperm-rich(SRF)and post sperm-rich(PSRF).These fractions are known to vary in volume,sperm concentration and quality,as well as in the origin and composition of seminal plasma(SP),with differences being also observed within the SRF one.Yet,whether disparities in the DNA integrity and chromatin condensation and pro-tamination of their sperm exist has not been interrogated.Results This study determined chromatin protamination(Chromomycin A3 test,CMA_(3)),condensation(Dibromobi-mane test,DBB),and DNA integrity(Comet assay)in the pig sperm contained in the first 10 m L of the SRF(SRF-P1),the remaining portion of the sperm-rich fraction(SRF-P2),and the post sperm-rich fraction(PSRF).While chromatin protamination was found to be similar between the different ejaculate fractions(P>0.05),chromatin condensation was seen to be greater in SRF-P1 and SRF-P2 than in the PSRF(P=0.018 and P=0.004,respectively).Regarding DNA integrity,no differences between fractions were observed(P>0.05).As the SRF-P1 has the highest sperm concentra-tion and ejaculate fractions are known to differ in antioxidant composition,the oxidative stress index(OSi)in SP,calcu-lated as total oxidant activity divided by total antioxidant capacity,was tested and confirmed to be higher in the SRF-P1 than in SRF-P2 and PSRF(0.42±0.06 vs.0.23±0.09 and 0.08±0.00,respectively;P<0.01);this index,in addition,was observed to be correlated to the sperm concentration of each fraction(Rs=0.973;P<0.001).Conclusion While sperm DNA integrity was not found to differ between ejaculate fractions,SRF-P1 and SRF-P2 were observed to exhibit greater chromatin condensation than the PSRF.This could be related to the OSi of each fraction.展开更多
In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fracti...In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security.展开更多
Dear Editor,Dynamics and digital circuit implementation of the fractional-order Lorenz system are investigated by employing Adomian decomposition method(ADM).Dynamics of the fractional-order Lorenz system with derivat...Dear Editor,Dynamics and digital circuit implementation of the fractional-order Lorenz system are investigated by employing Adomian decomposition method(ADM).Dynamics of the fractional-order Lorenz system with derivative order and parameter varying is analyzed by means of Lyapunov exponents(LEs),bifurcation diagram.展开更多
Isotope eff ects are pivotal in understanding silicate melt evaporation and planetary accretion processes.Based on the Hertz-Knudsen equation,the current theory often fails to predict observed isotope fractionations o...Isotope eff ects are pivotal in understanding silicate melt evaporation and planetary accretion processes.Based on the Hertz-Knudsen equation,the current theory often fails to predict observed isotope fractionations of laboratory experiments due to its oversimplified assumptions.Here,we point out that the Hertz-Knudsen-equation-based theory is incomplete for silicate melt evaporation cases and can only be used for situations where the vaporized species is identical to the one in the melt.We propose a new model designed for silicate melt evaporation under vacuum.Our model considers multiple steps including mass transfer,chemical reaction,and nucleation.Our derivations reveal a kinetic isotopic fractionation factor(KIFF orα)αour model=[m(^(1)species)/m(^(2)species)]^(0.5),where m(species)is the mass of the reactant of reaction/nucleation-limiting step or species of diffusion-limiting step and superscript 1 and 2 represent light and heavy isotopes,respectively.This model can eff ectively reproduce most reported KIFFs of laboratory experiments for various elements,i.e.,Mg,Si,K,Rb,Fe,Ca,and Ti.And,the KIFF-mixing model referring that an overall rate of evaporation can be determined by two steps jointly can account for the eff ects of low P_(H2)pressure,composition,and temperature.In addition,we find that chemical reactions,diffusion,and nucleation can control the overall rate of evaporation of silicate melts by using the fitting slope in ln(−ln f)versus ln(t).Notably,our model allows for the theoretical calculations of parameters like activation energy(E_(a)),providing a novel approach to studying compositional and environmental eff ects on evaporation processes,and shedding light on the formation and evolution of the proto-solar and Earth-Moon systems.展开更多
Ten rock samples consisting of one pyroclastic density current(PDC1)deposit,seven lava flows(LF1–7),and two summit lava domes(LD1,2)were studied to understand the petrogenesis and magma dynamics at Mt.Sumbing.The str...Ten rock samples consisting of one pyroclastic density current(PDC1)deposit,seven lava flows(LF1–7),and two summit lava domes(LD1,2)were studied to understand the petrogenesis and magma dynamics at Mt.Sumbing.The stratigraphy is arranged as LF1,PDC1,LF2,LF3,LF4,LF5,LF6,LF7,LD1,and LD2;furthermore,these rocks were divided into two types.TypeⅠ,observed in the oldest(LF1)sample,has poor MgO and high Ba/Nb,Th/Yb and Sr.The remaining samples(PDC1–LD2)represent typeⅡ,characterized by high MgO and low Ba/Nb,Th/Yb and Sr values.We suggest that type I is derived from AOC(altered oceanic crust)-rich melts that underwent significant crustal assimilation,while typeⅡoriginates from mantle-rich melts with less significant crustal assimilation.The early stage of typeⅡmagma(PDC1–LF3)was considered a closed system,evolving basaltic andesite into andesite(55.0–60.2 wt%SiO_(2))with a progressively increasing phenocryst(0.30–0.48φ_(PC))and decreasing crystal size distribution(CSD)slope(from-3.9 to-2.9).The evidence of fluctuating silica and phenocryst contents(between 55.9–59.7 wt%and 0.25–0.41φ_(PC),respectively),coupled with the kinked and steep(from-5.0 to-3.3)CSD curves imply the interchanging condition between open(i.e.,magma mixing)and closed magmatic systems during the middle stage(LF4–LF6).Finally,it underwent to closed system again during the final stage(LF7–LD2)because the magma reached dacitic composition(at most 68.9 wt%SiO_(2))with abundant phenocryst(0.38–0.45φ_(PC))and gentle CSD slope(from-4.1 to-1.2).展开更多
Fractional orbital angular momentum(OAM) vortex beams present a promising way to increase the data throughput in optical communication systems. Nevertheless, high-precision recognition of fractional OAM with different...Fractional orbital angular momentum(OAM) vortex beams present a promising way to increase the data throughput in optical communication systems. Nevertheless, high-precision recognition of fractional OAM with different propagation distances remains a significant challenge. We develop a convolutional neural network(CNN)method to realize high-resolution recognition of OAM modalities, leveraging asymmetric Bessel beams imbued with fractional OAM. Experimental results prove that our method achieves a recognition accuracy exceeding 94.3% for OAM modes, with an interval of 0.05, and maintains a high recognition accuracy above 92% across varying propagation distances. The findings of our research will be poised to significantly contribute to the deployment of fractional OAM beams within the domain of optical communications.展开更多
This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates...This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping.展开更多
Considerable progress has been made in recent years to the development of sustainable polymers from bio-based feedstocks.In this study,100%bio-based nylons were prepared via an integrated chemical and biological proce...Considerable progress has been made in recent years to the development of sustainable polymers from bio-based feedstocks.In this study,100%bio-based nylons were prepared via an integrated chemical and biological process from lignocellulose.These novel nylons were obtained by the melt polymerization of 3-propyladipic acid derived from lignin and 1,5-pentenediamine/1,4-butanediamine derived from carbohydrate sugar.Central to the concept is a three-step noble metal free catalytic chemical funnelling sequence(Raney Ni mediated reductive catalytic fractionation-reductive funnelling-oxidative funnelling),which allowed for obtaining a single component 3-propyladipic acid from lignin with high efficiency.The structural and thermodynamic properties of the obtained nylons have been systematically investigated,and thus obtained transparent bio-based nylons exhibited higher Mw(>32,000)and excellent thermal stability(Td5%>265℃).Considering their moderate Tg and good melt strength,these transparent bio-based nylons could serve as promising functional additives or temperature-responsive materials.展开更多
In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small in...In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small initial data.In addition,we also obtain the Gevrey class regularity and the temporal decay rate of the solution.展开更多
In regenerative medicine,the isolation of mesenchymal stromal cells(MSCs)from the adipose tissue’s stromal vascular fraction(SVF)is a critical area of study.Our review meticulously examines the isolation process of M...In regenerative medicine,the isolation of mesenchymal stromal cells(MSCs)from the adipose tissue’s stromal vascular fraction(SVF)is a critical area of study.Our review meticulously examines the isolation process of MSCs,starting with the extraction of adipose tissue.The choice of liposuction technique,anatomical site,and immediate processing are essential to maintain cell functionality.We delve into the intricacies of enzymatic digestion,emphasizing the fine-tuning of enzyme concentrations to maximize cell yield while preventing harm.The review then outlines the filtration and centrifugation techniques necessary for isolating a purified SVF,alongside cell viability assessments like flow cytometry,which are vital for confirming the efficacy of the isolated MSCs.We discuss the advantages and drawbacks of using autologous vs allogeneic SVF sources,touching upon immunocompatibility and logistical considerations,as well as the variability inherent in donor-derived cells.Anesthesia choices,the selection between hypo-dermic needles vs liposuction cannulas,and the role of adipose tissue lysers in achieving cellular dissociation are evaluated for their impact on SVF isolation.Centrifugation protocols are also analyzed for their part in ensuring the integrity of the SVF.The necessity for standardized MSC isolation protocols is highlighted,promoting reproducibility and successful clinical application.We encourage ongoing research to deepen the understanding of MSC biology and therapeutic action,aiming to further the field of regenerative medicine.The review concludes with a call for rigorous research,interdisciplinary collaboration,and strict adherence to ethical and regulatory standards to safeguard patient safety and optimize treatment outcomes with MSCs.展开更多
基金Supported by the National-Natural Science Foundation of China (21076233), the Major Science and Technology R&D Pro- gram of Guangdong Province (2010A080801003).
文摘Delayed coking is an important process in refinery to convert heavy residue oils from crude distillation units (CDUs) and fluid catalytic cracking units (FCCUs) into dry gas, liquefied petroleum gas (LPG), gasoline, die- sel, gas oils and cokes. The main fractionator, separating superheating reaction vapors from the coke drums into lighter oil products, involves a de-superheating section and a rectifying section, and couldn't be simulated as a whole column directly because of non-eouilibrium in the de-suoerheatine section. It is verv imoortant to correctlv simulate the main fractionator for operational parameter and energy-use optimization of delayed cokers. This paper discusses the principle of de-superheating processes, and then proposes a new simulation strategy. Some key issues such as composition prediction of the reaction vapors, selection of thermodynamic methods, estimation of tray efficiency, etc. are discussed. The proposed simulation approach is applied to two industrial delayed cokers with typical technological processes in a Chinese refinery by using PRO/II. The simulation results obtained are well consistent with the actual operation data, which indicates that the presented approach is suitable to simulate the main fraction- ators of delayed cokers or other distillation columns consisting of de-superheating sections and rectifying sections.
基金Supported by the National Natural Science Foundation of China(61590924,61673273,61521063)
文摘Exergy indicates the maximal energy that can do work effectively. Different from optimization of product quality or calculation of generic energy conservation in most previous studies, the application of exergy analysis and exergy cost optimization in petrochemical industry is of great economic and environmental significance. Based on the main fractionator in Jiujiang Petrochemical Complex No. 2 FCCU, an enhanced exergy cost optimization under different operating conditions by adjusting set points of temperature and valves opening degree for flow control is studied in this paper in order to reduce exergy cost and improve the quality of energy. A steadystate optimization algorithm to enhance exergy availability and an objective function comprehensively considering exergy loss are proposed. On the basis of ensuring the quality of petroleum products, the economic benefits can be improved by optimizing the controllable variables due to the fact that exergy cost is decreased.
文摘BACKGROUND Current osteoarthritis(OA)treatments focus on symptom relief without addressing the underlying disease process.In regenerative medicine,current treatments have limitations.In regenerative medicine,more research is needed for intra-articular stromal vascular fraction(SVF)injections in OA,including dosage optimization,long-term efficacy,safety,comparisons with other treatments,and mechanism exploration.AIM To compare the efficacy of intra-articular SVF with corticosteroid(ICS)injections in patients with primary knee OA.METHODS The study included 50 patients with Kellgren-Lawrence grades II and III OA.Patients were randomly assigned(1:1)to receive either a single intra-articular SVF injection(group A)or a single intra-articular ICS(triamcinolone)(group B)injection.Patients were followed up at 1,3,6,12,and 24 months.Visual analog score(VAS)and International Knee Documentation Committee(IKDC)scores were administered before the procedure and at all followups.The safety of SVF in terms of adverse and severe adverse events was recorded.Statistical analysis was performed with SPSS Version 26.0,IBM Corp,Chicago,IL,United States.RESULTS Both groups had similar demographics and baseline clinical characteristics.Follow-up showed minor patient loss,resulting in 23 and 24 in groups A and B respectively.Group A experienced a notable reduction in pain,with VAS scores decreasing from 7.7 to 2.4 over 24 months,compared to a minor reduction from 7.8 to 6.2 in Group B.This difference in pain reduction in group A was statistically significant from the third month onwards.Additionally,Group A showed significant improvements in knee functionality,with IKDC scores rising from 33.4 to 83.10,whereas Group B saw a modest increase from 36.7 to 45.16.The improvement in Group A was statistically significant from 6 months and maintained through 24 months.CONCLUSION Our study demonstrated that intra-articular administration of SVF can lead to reduced pain and improved knee function in patients with primary knee OA.More adequately powered,multi-center,double-blinded,randomised clinical trials with longer follow-ups are needed to further establish safety and justify its clinical use.
文摘BACKGROUND Left bundle branch pacing(LBBP)is a novel pacing modality of cardiac resynchronization therapy(CRT)that achieves more physiologic native ventricular activation than biventricular pacing(BiVP).AIM To explore the validity of electromechanical resynchronization,clinical and echocardiographic response of LBBP-CRT.METHODS Systematic review and Meta-analysis were conducted in accordance with the standard guidelines as mentioned in detail in the methodology section.RESULTS In our analysis,the success rate of LBBP-CRT was determined to be 91.1%.LBBP CRT significantly shortened QRS duration,with significant improvement in echocardiographic parameters,including left ventricular ejection fraction,left ventricular end-diastolic diameter and left ventricular end-systolic diameter in comparison with BiVP-CRT.CONCLUSION A significant reduction in New York Heart Association class and B-type natriuretic peptide levels was also observed in the LBBP-CRT group vs BiVP-CRT group.Lastly,the LBBP-CRT cohort had a reduced pacing threshold at follow-up as compared to BiVP-CRT.
基金funded by the Key Research and Development of the Gansu Province(No.20YF8FA 079)the Construction Project of the Gansu Clinical Medical Research Center(No.18JR2FA003).
文摘BACKGROUND Left ventricular(LV)remodeling and diastolic function in people with heart failure(HF)are correlated with iron status;however,the causality is uncertain.This Mendelian randomization(MR)study investigated the bidirectional causal relationship between systemic iron parameters and LV structure and function in a preserved ejection fraction population.METHODS Transferrin saturation(TSAT),total iron binding capacity(TIBC),and serum iron and ferritin levels were extracted as instrumental variables for iron parameters from meta-analyses of public genome-wide association studies.Individuals without myocardial infarction history,HF,or LV ejection fraction(LVEF)<50%(n=16,923)in the UK Biobank Cardiovascular Magnetic Resonance Imaging Study constituted the outcome dataset.The dataset included LV end-diastolic volume,LV endsystolic volume,LV mass(LVM),and LVM-to-end-diastolic volume ratio(LVMVR).We used a two-sample bidirectional MR study with inverse variance weighting(IVW)as the primary analysis method and estimation methods using different algorithms to improve the robustness of the results.RESULTS In the IVW analysis,one standard deviation(SD)increased in TSAT significantly correlated with decreased LVMVR(β=-0.1365;95%confidence interval[CI]:-0.2092 to-0.0638;P=0.0002)after Bonferroni adjustment.Conversely,no significant relationships were observed between other iron and LV parameters.After Bonferroni correction,reverse MR analysis showed that one SD increase in LVEF significantly correlated with decreased TSAT(β=-0.0699;95%CI:-0.1087 to-0.0311;P=0.0004).No heterogeneity or pleiotropic effects evidence was observed in the analysis.CONCLUSIONS We demonstrated a causal relationship between TSAT and LV remodeling and function in a preserved ejection fraction population.
基金This study is financially supported by StateKey Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Grant No.LAPS22012).
文摘This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures.
基金We acknowledge the funding support from the National Natural Science Foundation of China Youth Fund(Grant No.52004019)the National Natural Science Foundation of China(Grant No.41825018)China Postdoctoral Science Foundation(Grant No.2023M733481).
文摘Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations.
基金support from the National Science Foundation of China(22078190)the National Key R&D Plan of China(2020YFB1505802).
文摘Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices.
基金the financial support from the National Natural Science Foundation of China(No.52109119)the Guangxi Natural Science Foundation(No.2021GXNSFBA075030)+2 种基金the Guangxi Science and Technology Project(No.Guike AD20325002)the Chinese Postdoctoral Science Fund Project(No.2022 M723408)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-202202).
文摘Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.
文摘This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.
基金This research was supported by the European Union’s Horizon 2020 research and innovation scheme under the Marie Skłodowska-Curie grant agreement No.801342(Tecniospring INDUSTRYGrant:TECSPR-19-1-0003)+4 种基金the Ministry of Science and Innovation,Spain(Grants:PID2020-113320RB-I00,PID2020-113493RB-I00,RYC2021-034546-I and RYC2021-034764-I)the Catalan Agency for Management of University and Research Grants,Regional Government of Catalonia,Spain(Grants:2017-SGR-1229 and 2021-SGR-00900)the Seneca Foundation,Regional Government of Murcia,Spain(Grant:21935/PI/22)La Marato de TV3 Foundation(Grant:214/857-202039)and the Catalan Institution for Research and Advanced Studies(ICREA).
文摘Background Protamination and condensation of sperm chromatin as well as DNA integrity play an essential role during fertilization and embryo development.In some mammals,like pigs,ejaculates are emitted in three separate fractions:pre-sperm,sperm-rich(SRF)and post sperm-rich(PSRF).These fractions are known to vary in volume,sperm concentration and quality,as well as in the origin and composition of seminal plasma(SP),with differences being also observed within the SRF one.Yet,whether disparities in the DNA integrity and chromatin condensation and pro-tamination of their sperm exist has not been interrogated.Results This study determined chromatin protamination(Chromomycin A3 test,CMA_(3)),condensation(Dibromobi-mane test,DBB),and DNA integrity(Comet assay)in the pig sperm contained in the first 10 m L of the SRF(SRF-P1),the remaining portion of the sperm-rich fraction(SRF-P2),and the post sperm-rich fraction(PSRF).While chromatin protamination was found to be similar between the different ejaculate fractions(P>0.05),chromatin condensation was seen to be greater in SRF-P1 and SRF-P2 than in the PSRF(P=0.018 and P=0.004,respectively).Regarding DNA integrity,no differences between fractions were observed(P>0.05).As the SRF-P1 has the highest sperm concentra-tion and ejaculate fractions are known to differ in antioxidant composition,the oxidative stress index(OSi)in SP,calcu-lated as total oxidant activity divided by total antioxidant capacity,was tested and confirmed to be higher in the SRF-P1 than in SRF-P2 and PSRF(0.42±0.06 vs.0.23±0.09 and 0.08±0.00,respectively;P<0.01);this index,in addition,was observed to be correlated to the sperm concentration of each fraction(Rs=0.973;P<0.001).Conclusion While sperm DNA integrity was not found to differ between ejaculate fractions,SRF-P1 and SRF-P2 were observed to exhibit greater chromatin condensation than the PSRF.This could be related to the OSi of each fraction.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62071496,61901530,and 62061008)the Natural Science Foundation of Hunan Province of China(Grant No.2020JJ5767).
文摘In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security.
基金supported by the National Natural Science Foundation of China(62061008,62071496,61901530)。
文摘Dear Editor,Dynamics and digital circuit implementation of the fractional-order Lorenz system are investigated by employing Adomian decomposition method(ADM).Dynamics of the fractional-order Lorenz system with derivative order and parameter varying is analyzed by means of Lyapunov exponents(LEs),bifurcation diagram.
基金supported by Chinese NSF project(42,130,114)the strategic priority research program(B)of CAS(XDB41000000)the pre-research Project on Civil Aerospace Technologies No.D020202 funded by Chinese National Space Administration(CNSA)and Guizhou Provincial 2021 Science and Technology Subsidies(No.GZ2021SIG).
文摘Isotope eff ects are pivotal in understanding silicate melt evaporation and planetary accretion processes.Based on the Hertz-Knudsen equation,the current theory often fails to predict observed isotope fractionations of laboratory experiments due to its oversimplified assumptions.Here,we point out that the Hertz-Knudsen-equation-based theory is incomplete for silicate melt evaporation cases and can only be used for situations where the vaporized species is identical to the one in the melt.We propose a new model designed for silicate melt evaporation under vacuum.Our model considers multiple steps including mass transfer,chemical reaction,and nucleation.Our derivations reveal a kinetic isotopic fractionation factor(KIFF orα)αour model=[m(^(1)species)/m(^(2)species)]^(0.5),where m(species)is the mass of the reactant of reaction/nucleation-limiting step or species of diffusion-limiting step and superscript 1 and 2 represent light and heavy isotopes,respectively.This model can eff ectively reproduce most reported KIFFs of laboratory experiments for various elements,i.e.,Mg,Si,K,Rb,Fe,Ca,and Ti.And,the KIFF-mixing model referring that an overall rate of evaporation can be determined by two steps jointly can account for the eff ects of low P_(H2)pressure,composition,and temperature.In addition,we find that chemical reactions,diffusion,and nucleation can control the overall rate of evaporation of silicate melts by using the fitting slope in ln(−ln f)versus ln(t).Notably,our model allows for the theoretical calculations of parameters like activation energy(E_(a)),providing a novel approach to studying compositional and environmental eff ects on evaporation processes,and shedding light on the formation and evolution of the proto-solar and Earth-Moon systems.
基金funded by the Faculty of Geography under the scheme of“Dana Hibah Penelitian Mandiri Dosen Tahun 2023 Tahap 1”。
文摘Ten rock samples consisting of one pyroclastic density current(PDC1)deposit,seven lava flows(LF1–7),and two summit lava domes(LD1,2)were studied to understand the petrogenesis and magma dynamics at Mt.Sumbing.The stratigraphy is arranged as LF1,PDC1,LF2,LF3,LF4,LF5,LF6,LF7,LD1,and LD2;furthermore,these rocks were divided into two types.TypeⅠ,observed in the oldest(LF1)sample,has poor MgO and high Ba/Nb,Th/Yb and Sr.The remaining samples(PDC1–LD2)represent typeⅡ,characterized by high MgO and low Ba/Nb,Th/Yb and Sr values.We suggest that type I is derived from AOC(altered oceanic crust)-rich melts that underwent significant crustal assimilation,while typeⅡoriginates from mantle-rich melts with less significant crustal assimilation.The early stage of typeⅡmagma(PDC1–LF3)was considered a closed system,evolving basaltic andesite into andesite(55.0–60.2 wt%SiO_(2))with a progressively increasing phenocryst(0.30–0.48φ_(PC))and decreasing crystal size distribution(CSD)slope(from-3.9 to-2.9).The evidence of fluctuating silica and phenocryst contents(between 55.9–59.7 wt%and 0.25–0.41φ_(PC),respectively),coupled with the kinked and steep(from-5.0 to-3.3)CSD curves imply the interchanging condition between open(i.e.,magma mixing)and closed magmatic systems during the middle stage(LF4–LF6).Finally,it underwent to closed system again during the final stage(LF7–LD2)because the magma reached dacitic composition(at most 68.9 wt%SiO_(2))with abundant phenocryst(0.38–0.45φ_(PC))and gentle CSD slope(from-4.1 to-1.2).
基金supported by the National Natural Science Foundation of China (Grant Nos.12174338 and 11874321)。
文摘Fractional orbital angular momentum(OAM) vortex beams present a promising way to increase the data throughput in optical communication systems. Nevertheless, high-precision recognition of fractional OAM with different propagation distances remains a significant challenge. We develop a convolutional neural network(CNN)method to realize high-resolution recognition of OAM modalities, leveraging asymmetric Bessel beams imbued with fractional OAM. Experimental results prove that our method achieves a recognition accuracy exceeding 94.3% for OAM modes, with an interval of 0.05, and maintains a high recognition accuracy above 92% across varying propagation distances. The findings of our research will be poised to significantly contribute to the deployment of fractional OAM beams within the domain of optical communications.
文摘This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping.
基金support by National Key Research and Development Program of China(Grant No.:2023YFA0913604)Program of National Natural Science Foundation of China(Grant No.:22178170,22378195)+2 种基金Six talent peaks project in Jiangsu Province(SWYY-045)Program of National Natural Science Foundation of China(Grant No.22208155)Jiangsu Province Natural Science Foundation for Young Scholars(Grant No.BK20210552).
文摘Considerable progress has been made in recent years to the development of sustainable polymers from bio-based feedstocks.In this study,100%bio-based nylons were prepared via an integrated chemical and biological process from lignocellulose.These novel nylons were obtained by the melt polymerization of 3-propyladipic acid derived from lignin and 1,5-pentenediamine/1,4-butanediamine derived from carbohydrate sugar.Central to the concept is a three-step noble metal free catalytic chemical funnelling sequence(Raney Ni mediated reductive catalytic fractionation-reductive funnelling-oxidative funnelling),which allowed for obtaining a single component 3-propyladipic acid from lignin with high efficiency.The structural and thermodynamic properties of the obtained nylons have been systematically investigated,and thus obtained transparent bio-based nylons exhibited higher Mw(>32,000)and excellent thermal stability(Td5%>265℃).Considering their moderate Tg and good melt strength,these transparent bio-based nylons could serve as promising functional additives or temperature-responsive materials.
基金supported by the Opening Project of Guangdong Province Key Laboratory of Cyber-Physical System(20168030301008)supported by the National Natural Science Foundation of China(11126266)+4 种基金the Natural Science Foundation of Guangdong Province(2016A030313390)the Quality Engineering Project of Guangdong Province(SCAU-2021-69)the SCAU Fund for High-level University Buildingsupported by the National Key Research and Development Program of China(2020YFA0712500)the National Natural Science Foundation of China(11971496,12126609)。
文摘In this paper,we study the three-dimensional regularized MHD equations with fractional Laplacians in the dissipative and diffusive terms.We establish the global existence of mild solutions to this system with small initial data.In addition,we also obtain the Gevrey class regularity and the temporal decay rate of the solution.
文摘In regenerative medicine,the isolation of mesenchymal stromal cells(MSCs)from the adipose tissue’s stromal vascular fraction(SVF)is a critical area of study.Our review meticulously examines the isolation process of MSCs,starting with the extraction of adipose tissue.The choice of liposuction technique,anatomical site,and immediate processing are essential to maintain cell functionality.We delve into the intricacies of enzymatic digestion,emphasizing the fine-tuning of enzyme concentrations to maximize cell yield while preventing harm.The review then outlines the filtration and centrifugation techniques necessary for isolating a purified SVF,alongside cell viability assessments like flow cytometry,which are vital for confirming the efficacy of the isolated MSCs.We discuss the advantages and drawbacks of using autologous vs allogeneic SVF sources,touching upon immunocompatibility and logistical considerations,as well as the variability inherent in donor-derived cells.Anesthesia choices,the selection between hypo-dermic needles vs liposuction cannulas,and the role of adipose tissue lysers in achieving cellular dissociation are evaluated for their impact on SVF isolation.Centrifugation protocols are also analyzed for their part in ensuring the integrity of the SVF.The necessity for standardized MSC isolation protocols is highlighted,promoting reproducibility and successful clinical application.We encourage ongoing research to deepen the understanding of MSC biology and therapeutic action,aiming to further the field of regenerative medicine.The review concludes with a call for rigorous research,interdisciplinary collaboration,and strict adherence to ethical and regulatory standards to safeguard patient safety and optimize treatment outcomes with MSCs.