期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Factors Affecting the Relation of Fracture Toughness V_(GC) with Critical Void Growth Ratio R_C/R_O
1
作者 Li ZHOU(Department of Civil Engineering, Wuyi University,Jiangmen 529020, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1998年第6期574-576,共3页
The relationship between fracture toughness VGC and critical void growth RC/RO was studied for ten kinds of Steel. The macroscopic fracture toughness VGC was determined by using notched tensile specimens. and the micr... The relationship between fracture toughness VGC and critical void growth RC/RO was studied for ten kinds of Steel. The macroscopic fracture toughness VGC was determined by using notched tensile specimens. and the microscopic parameters of critical void growth ratio RC/RO were quantitatively measured under SEM. Then, the coefhcient C in the relation VGC = C In(RC/RO) proposed in author's past work was specifically explored. The correlation of C with tensile proderty parameter φ=σyδ/(Eφn) was presented for the Steel investigated, and the effects of low temperature on C were also discussed. Results show that the coefficient C is linearly related to the parameter and insensitive to low temperature. 展开更多
关键词 GC with Critical Void Growth Ratio R_C/R_O factors Affecting the Relation of fracture Toughness V
下载PDF
Systematic prediction of the gas content, fractures, and brittleness in fractured shale reservoirs with TTI medium
2
作者 Yun Zhao Xiao-Tao Wen +2 位作者 Chen-Long Li Yang Liu Chun-Lan Xie 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3202-3221,共20页
The main objective is to optimize the development of shale gas-rich areas by predicting seismic sweet spot parameters in shale reservoirs. We systematically assessed the fracture development, fracture gas content, and... The main objective is to optimize the development of shale gas-rich areas by predicting seismic sweet spot parameters in shale reservoirs. We systematically assessed the fracture development, fracture gas content, and rock brittleness in fractured gas-bearing shale reservoirs. To better characterize gas-bearing shale reservoirs with tilted fractures, we optimized the petrophysical modeling based on the equivalent medium theory. Based on the advantages of shale petrophysical modeling, we not only considered the brittle mineral fraction but also the combined effect of shale porosity, gas saturation, and total organic carbon(TOC) when optimizing the brittleness index. Due to fractures generally functioning as essential channels for fluid storage and movement, fracture density and fracture fluid identification factors are critical geophysical parameters for fractured reservoir prediction. We defined a new fracture gas indication factor(GFI) to detect fracture-effective gas content. A new linear PP-wave reflection coefficient equation for a tilted transversely isotropic(TTI) medium was rederived, realizing the direct prediction of anisotropic fracture parameters and the isotropic elasticity parameters from offset vector tile(OVT)-domain seismic data. Synthetic seismic data experiments demonstrated that the inversion algorithm based on the L_P quasinorm sparsity constraint and the split-component inversion strategy exhibits high stability and noise resistance. Finally, we applied our new prediction method to evaluate fractured gas-bearing shale reservoirs in the Sichuan Basin of China, demonstrating its effectiveness. 展开更多
关键词 Petrophysical modeling Brittleness index fracture gas indication factor(GFI) Tilted transversely isotropic(TTI) fracture density
下载PDF
Geological characteristics and models of fault-foldfracture body in deep tight sandstone of the second member of Upper Triassic Xujiahe Formation in Xinchang structural belt of Sichuan Basin,SW China 被引量:1
3
作者 LIU Junlong LIU Zhongqun +8 位作者 LIU Zhenfeng LIU Yali SHEN Baojian XIAO Kaihua BI Youyi WANG Xiaowen WANG Ail FAN Lingxiao LI Jitongl 《Petroleum Exploration and Development》 SCIE 2023年第3期603-614,共12页
In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot... In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China. 展开更多
关键词 fault-fold-fracture body fracture control factor genetic characteristics geological model deep layer tight sandstone Xinchang structural belt Upper Triassic Xujiahe Formation Sichuan Basin
下载PDF
SIF-based fracture criterion for interface cracks 被引量:3
4
作者 Xing Ji 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期491-496,共6页
The complex stress intensity factor K governing the stress field of an interface crack tip may be split into two parts, i.e.,■ and s^(-iε), so that K = ■ s^(-iε), s is a characteristic length and ε is the osc... The complex stress intensity factor K governing the stress field of an interface crack tip may be split into two parts, i.e.,■ and s^(-iε), so that K = ■ s^(-iε), s is a characteristic length and ε is the oscillatory index. ■ has the same dimension as the classical stress intensity factor and characterizes the interface crack tip field. That means a criterion for interface cracks may be formulated directly with■, as Irwin(ASME J. Appl. Mech. 24:361–364, 1957) did in 1957 for the classical fracture mechanics. Then, for an interface crack,it is demonstrated that the quasi Mode I and Mode II tip fields can be defined and distinguished from the coupled mode tip fields. Built upon SIF-based fracture criteria for quasi Mode I and Mode II, the stress intensity factor(SIF)-based fracture criterion for mixed mode interface cracks is proposed and validated against existing experimental results. 展开更多
关键词 Interface crack Stress singularity fracture criterion Stress intensity factor
下载PDF
Water coning mechanism in Tarim fractured sandstone gas reservoirs 被引量:1
5
作者 沈伟军 刘晓华 +1 位作者 李熙喆 陆家亮 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期344-349,共6页
The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomen... The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomenon caused by the imbalance between gravity and viscous forces around the completion interval. There are several controllable and uncontrollable parameters influencing this problem. In order to simulate the key parameters affecting the water coning phenomenon, a model was developed to represent a single well with an underlying aquifer using the fractured sandstone gas reservoir data of the A-Well in Dina gas fields.The parametric study was performed by varying six properties individually over a representative range. The results show that matrix permeability, well penetration(especially fracture permeability), vertical-to-horizontal permeability ratio, aquifer size and gas production rate have considerable effect on water coning in the fractured gas reservoirs. Thus, investigation of the effective parameters is necessary to understand the mechanism of water coning phenomenon. Simulation of the problem helps to optimize the conditions in which the breakthrough of water coning is delayed. 展开更多
关键词 water coning fractured gas reservoir water cut recovery factor
下载PDF
Incompatible numerical manifold method for fracture problems
6
作者 Gaofeng Wei Kaitai Li Haihui Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第2期247-255,共9页
The incompatible numerical manifold method (INMM) is based on the finite cover approximation theory, which provides a unified framework for problems dealing with continuum and discontinuities. The incompatible numer... The incompatible numerical manifold method (INMM) is based on the finite cover approximation theory, which provides a unified framework for problems dealing with continuum and discontinuities. The incompatible numerical manifold method employs two cover systems as follows. The mathematical cover system provides the nodes for forming finite covers of the solution domain and the weighted functions, and the physical cover system describes geometry of the domain and the discontinuous surfaces therein. In INMM, the mathematical finite cover approximation theory is used to model cracks that lead to interior discontinuities in the process of displacement. Therefore, the discontinuity is treated mathematically instead of empirically by the existing methods. However, one cover of a node is divided into two irregular sub-covers when the INMM is used to model the discontinuity. As a result, the method sometimes causes numerical errors at the tip of a crack. To improve the precision of the INMM, the analytical solution is used at the tip of a crack, and thus the cover displacement functions are extended with higher precision and computational efficiency. Some numerical examples are given. 展开更多
关键词 Incompatible numerical manifold method Finite cover approximation theory fracture·Stress intensity factors Crack tip field
下载PDF
A Study on Propagation Mechanism of Fracture Systems in Rock Masses by Discontinuity Displacement Method
7
作者 Tang HuimingChina University of Geosciences . Wihan 430074 《Journal of Earth Science》 SCIE CAS CSCD 1993年第1期111-114,共4页
The main task of fracture mechanics of rock masses is the study on the propagating mechanism of fractures in rock masses , which can be efficiently conducted by discontinuty displacement (DD) numerical evaluation . Fi... The main task of fracture mechanics of rock masses is the study on the propagating mechanism of fractures in rock masses , which can be efficiently conducted by discontinuty displacement (DD) numerical evaluation . Firstly ,the element stress and displacement are analysed and the principle and steps of the numerical calculation of stress intensity factor and fracture extension force are introduced .The numerical results of parallel and echelon fracture systems ,which are compared with real field fractures .are presented. Finally . a simple engineering application example is presented . 展开更多
关键词 fracture mechanics of rock masses discontinuity displacement method (DDM ) stress- intensity factor fracture extension force parallel fracture echelon fracture .
下载PDF
Dynamic Crack Propagation Analysis Using Scaled Boundary Finite Element Method 被引量:2
8
作者 林皋 朱朝磊 +1 位作者 李建波 胡志强 《Transactions of Tianjin University》 EI CAS 2013年第6期391-397,共7页
The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to pre... The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor(DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor(SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other. 展开更多
关键词 scaled boundary finite element method dynamic stress intensity factor remeshing dynamic fracture
下载PDF
Effect of BMI on outcomes of surgical treatment for tibial plateau fractures: A comparative retrospective case series study 被引量:7
9
作者 Yasar Mahsut Dincel All Oner +3 位作者 Yavuz Arikan Sever Caglar Rasit Ozcafer Mehmet Akif Gulec 《Chinese Journal of Traumatology》 CAS CSCD 2018年第2期104-108,共5页
Purpose: Tibia plateau fracture (TPF) treatment aims at achieving a stable, aligned, mobile, painless knee and preventing post-traumatic osteoarthritis. To achieve this goal, surgeons consider criteria such as pati... Purpose: Tibia plateau fracture (TPF) treatment aims at achieving a stable, aligned, mobile, painless knee and preventing post-traumatic osteoarthritis. To achieve this goal, surgeons consider criteria such as patients' characteristics, severity, risk of complications, fracture displacementJdepression, degree of soft tissue injury. However, body mass index (BMI) is not considered as a risk factor in literature. Our study was conducted to find out any possible correlation between BMI and functional scores or radiological score separately. Methods: Retrospective analysis of case series between 2011 and 2014 was done on the database of a tertiary hospital in Istanbul. There were 67 TPF patients (54 males, 13 females) in the study. Relationship between BM1 and functional knee scores or radiological score was compared statistically. Closed fractures with both high-energy and low-energy injury were included in the study. Patients with open fracture, multi-trauma presence, meniscus and/or ligamentous injury, increased co-morbidity, inadequate records (25 cases in all) were excluded. Surgery type, Schatzker classification, injury side, trauma energy, and gender were considered as possible risk factors. Binary regression analysis was done for possible factors affecting functional knee scores and radiologic score. Results: Model summary calculations were done as Nagelkerke R2 test for Knee Society score, Lysholm knee score, and Ahlback and Rydberg radiologic scores, which were 0.648, 0.831, and 0.327 respec- tively. Homer-Lemeshow test values were 0.976, 0.998, and 0.362, respectively. There is negative correlation between BMI and both knee function scores. There is no correlation between BMI and radiologic score. Conclusion: An increase in BMI has a negative effect on functional knee scores after surgical treatment of TPFs. Therefore, BMI should be considered as a risk factor for surgical treatment of TPFs. 展开更多
关键词 Tibial plateau fractures Risk factor Body mass index
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部