期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Calculating the number of radial cracks around a wellbore fractured by liquid CO2 phase transition blasting technology
1
作者 Kun Jiang Shouchun Deng +1 位作者 Yixuan Li Haibo Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4515-4531,共17页
Integrating liquid CO_(2)phase transition blasting(LCPTB)technology with hydraulic fracturing(HF)methods can help reduce wellbore damage,create multiple radial fractures,and establish a complex fracture network.This a... Integrating liquid CO_(2)phase transition blasting(LCPTB)technology with hydraulic fracturing(HF)methods can help reduce wellbore damage,create multiple radial fractures,and establish a complex fracture network.This approach significantly increases the recovery efficiency of low-permeability oil and gas fields.Accurately calculating the number of fractures caused by LCPTB is necessary to predict production enhancement effects and optimize subsequent HF designs.However,few studies are reported on large-scale physical model experiments in terms of a method for calculating the fracture number.This study analyzed the initiation and propagation of cracks under LCPTB,derived a calculation formula for crack propagation radius under stress waves,and then proposed a new,fast,and accurate method for calculating the fracture number using the principle of mass conservation.Through ten rock-breaking tests using LCPTB,the study confirmed the effectiveness of the proposed calculation approach and elucidated the variation rule of explosion pressure,rock-breaking scenario,and the impact of varying parameters on fracture number.The results show that the new calculation method is suitable for fracturing technologies with high pressure rates.Recommendations include enlarging the diameter of the fracturing tube and increasing the liquid CO2 mass in the tube to enhance fracture effectiveness.Moreover,the method can be applied to other fracturing technologies,such as explosive fracturing(EF)within HF formations,indicating its broader applicability and potential impact on optimizing unconventional resource extraction technologies. 展开更多
关键词 Liquid CO_(2)phase transition blasting(LCPTB) Rock fracturing fracture number Physical model experiment
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部