期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fracture propagation,proppant transport and parameter optimization of multi-well pad fracturing treatment
1
作者 YANG Peng ZHANG Shicheng +4 位作者 ZOU Yushi LI Jianmin MA Xinfang TIAN Gang WANG Junchao 《Petroleum Exploration and Development》 SCIE 2023年第5期1225-1235,共11页
This paper establishes a 3D multi-well pad fracturing numerical model coupled with fracture propagation and proppant migration based on the displacement discontinuity method and Eulerian-Eulerian frameworks,and the fr... This paper establishes a 3D multi-well pad fracturing numerical model coupled with fracture propagation and proppant migration based on the displacement discontinuity method and Eulerian-Eulerian frameworks,and the fracture propagation and proppant distribution during multi-well fracturing are investigated by taking the actual multi-well pad parameters as an example.Fracture initiation and propagation during multi-well pad fracturing are jointly affected by a variety of stress interference mechanisms such as inter-cluster,inter-stage,and inter-well,and the fracture extension is unbalanced among clusters,asymmetric on both wings,and dipping at heels.Due to the significant influence of fracture morphology and width on the migration capacity of proppant in the fracture,proppant is mainly placed in the area near the wellbore with large fracture width,while a high-concentration sandwash may easily occur in the area with narrow fracture width as a result of quick bridging.On the whole,the proppant placement range is limited.Increasing the well-spacing can reduce the stress interference of adjacent wells and promote the uniform distribution of fractures and proppant on both wings.The maximum stimulated reservoir volume or multi-fracture uniform propagation can be achieved by optimizing the well spacing.Although reducing the perforation-cluster spacing also can improve the stimulated reservoir area,a too low cluster spacing is not conducive to effectively increasing the propped fracture area.Since increasing the stage time lag is beneficial to reduce inter-stage stress interference,zipper fracturing produces more uniform fracture propagation and proppant distribution. 展开更多
关键词 multi-well pad multi-well fracturing fracture propagation proppant transport coupled numerical model fracturing parameter optimization
下载PDF
Productivity model for gas reservoirs with open-hole multi-fracturing horizontal wells and optimization of hydraulic fracture parameters 被引量:3
2
作者 Jianqiang Xue Nianyin Li +2 位作者 Xiaobing Lu Suiwang Zhang Yong Wang 《Petroleum》 2017年第4期454-460,共7页
Multi-fractured horizontal wells are commonly employed to improve the productivity of low and ultra-low permeability gas reservoirs.However,conventional productivity models for open-hole multi-fractured horizontal wel... Multi-fractured horizontal wells are commonly employed to improve the productivity of low and ultra-low permeability gas reservoirs.However,conventional productivity models for open-hole multi-fractured horizontal wells do not consider the interferences between hydraulic fractures and the open-hole segments,resulting in significant errors in calculation results.In this article,a novel productivity prediction model for gas reservoirs with open-hole multi-fractured horizontal wells was proposed based on complex potential theories,potential superimposition,and numerical analysis.Herein,an open-hole segment between two adjacent fractures was regarded as an equivalent fracture,which was discretized as in cases of artificial fractures.The proposed model was then applied to investigate the effects of various parameters,such as the angle between the fracture and horizontal shaft,fracture quantity,fracture length,diversion capacity of fractures,horizontal well length,and inter-fracture distance,on the productivity of low permeability gas reservoirs with multi-fractured horizontal wells.Simulation results revealed that the quantity,length,and distribution of fractures had significant effects on the productivity of low permeability gas reservoirs while the effects of the diversion capacity of fractures and the angle between the fracture and horizontal shaft were negligible.Additionally,a U-shaped distribution of fracture lengths was preferential as the quantity of fractures at shaft ends was twice that in the middle area. 展开更多
关键词 Low permeability gas reservoir Multi-fractured horizontal well Productivity prediction Open-hole completion Unsteady-state flow fracture parameters optimization
原文传递
Optimization of fracturing parameters for tight oil production based on genetic algorithm
3
作者 Dali Guo Yunwei Kang +2 位作者 Zhiyong Wang Yunxiang Zhao Shuguang Li 《Petroleum》 EI CSCD 2022年第2期252-263,共12页
It is difficult to determine the main controlling factors of tight oil production.In addition to the problem of uncontrollable prediction accuracy,the numerical prediction model established by the main controlling fac... It is difficult to determine the main controlling factors of tight oil production.In addition to the problem of uncontrollable prediction accuracy,the numerical prediction model established by the main controlling factors will also make the correctly predicted low production samples lose the value of development.Applying the optimization algorithm with fast convergence speed and global optimization to optimize the controllable parameters in the high-precision numerical prediction model can effectively improve the productivity of low production wells with timeliness,and bring greater economic value while saving development cost.Using PCA-GRA method,the sample weight and the weighted correlation ranking results of parameters affecting tight oil production were obtained.Thereupon then the main controlling factors of tight oil production were determined.Then we set up a BP neural network model with by taking the main controlling factors as input and tight oil production as output.The prediction effect of the network was good and can be put into use.The results of sensitivity analysis showed that the network was stable,and the total fracturing fluid volume had the greatest impact on the production of tight oil.Finally,by using genetic algorithm,we optimized the fracturing parameters of all low production well samples in the field data.Combined with the fracturing parameters of all high production well samples and the optimized fracturing parameters of low production wells,the optimal interval of fracturing parameters was given,which can provide guidance for the field fracturing operation. 展开更多
关键词 PCA-GRA method Main controlling factors BP neural network Genetic algorithm Optimization of fracturing parameters
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部