期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Experimental Investigation on Condensate Revaporization During Gas Injection Development in Fractured Gas Condensate Reservoirs
1
作者 Lei Zhang Yingxu He +3 位作者 Jintao Wu Haojun Wu Lei Huang Linna Sun 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期575-582,共8页
The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs si... The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs. 展开更多
关键词 Buried-hill fractured reservoir Gas condensate reservoir Retrograde condensation CO_(2)injection Retrograde vaporization
下载PDF
Modeling flow in naturally fractured reservoirs: effect of fracture aperture distribution on dominant sub-network for flow 被引量:6
2
作者 J. Gong W. R. Rossen 《Petroleum Science》 SCIE CAS CSCD 2017年第1期138-154,共17页
Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well d... Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well documented. In this paper, however, we focus here on the influence of fracture aperture distribution. We model a two dimensional fractured reservoir in which the matrix is impermeable and the fractures are well connected. The fractures obey a power-law length distribution, as observed in natural fracture networks. For the aperture distribution, since the information from subsurface fracture networks is limited, we test a number of cases: log-normal distributions (from narrow to broad), power-law distributions (from narrow to broad), and one case where the aperture is pro- portional to the fracture length. We find that even a well- connected fracture network can behave like a much sparser network when the aperture distribution is broad enough (c~ 〈 2 for power-law aperture distributions and σ ≥ 0.4 for log-normal aperture distributions). Specifically, most fractures can be eliminated leaving the remaining dominant sub-network with 90% of the permeability of the original fracture network. We determine how broad the aperture distribution must be to approach this behavior and the dependence of the dominant sub-network on the parameters of the aperture distribution. We also explore whether one can identify the dominant sub-network without doing flow calculations. 展开更多
关键词 Naturally fractured reservoir Non-uniformflow Effective permeability PERCOLATION Waterflood
下载PDF
Borehole stability in naturally fractured reservoirs luring production tests 被引量:5
3
作者 Zhang Fuxiang Zhang Shaoli +2 位作者 Jiang Xuehai Lu Rende Chen Mian 《Petroleum Science》 SCIE CAS CSCD 2008年第3期247-250,共4页
Based on the plane of weakness theory, a model for predicting borehole stability in fractured reservoirs under different stress states was estiblisted and the equations for solving borehole stability were developed. T... Based on the plane of weakness theory, a model for predicting borehole stability in fractured reservoirs under different stress states was estiblisted and the equations for solving borehole stability were developed. The minimum downhole pressures required to maintain borehole stability under different natural fracture occurrences were calculated by using the data from a well in the Tazhong (central Tarim) area, Tarim Basin, west China. Several conclusions were drawn for naturally fractured reservoirs with a dip angle from less than 10° to greater than 30°. Application in three wells in the Tazhong area indicates that this model is practically useful. 展开更多
关键词 Production test fractured reservoir borehole stability fracture dip azimuth of fracture
下载PDF
Fracture Characteristics and Heat Accumulation of Jixianian Carbonate Reservoirs in the Rongcheng Geothermal Field, Xiong'an New Area 被引量:7
4
作者 WANG Yingjin MA Feng +2 位作者 XIE Heping WANG Guiling WANG Zhihe 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第6期1902-1914,共13页
Geothermal energy plays an important role in urban construction of the Xiong’an New Area. Geothermal reservoir fracture distribution of the Mesoproterozoic Jixianian Wumishan Formation(Fm.) carbonate reservoir in the... Geothermal energy plays an important role in urban construction of the Xiong’an New Area. Geothermal reservoir fracture distribution of the Mesoproterozoic Jixianian Wumishan Formation(Fm.) carbonate reservoir in the Rongcheng geothermal field are evaluated based on FMI log from Wells D19 and D21. The results show carbonate reservoir fracture density of Well D19 is 15.2/100 m, greater than that of Well D21 with a value of 9.2/100 m. Reservoir porosity and permeability of Well D19 are better than that of Well D21, and the water saturation is bimodally distributed. The movable fluid volume ratio(BVM) of Well D19 is 2% to 8% with some zones exceeding 20%, while the value of Well D21 is less than 4%. Therefore, reservoir fractures in Well D19 are more conducive to fluid flow. Reservoir fractures have a similar occurrence to normal faults, indicating that the tensile stress field controlled the formation of such fractures. Developed reservoir fractures provide a good channel for groundwater convection. The circulation of regional groundwater and the heat exchange between water and rock and the multiple heat accumulation patterns form a stable and high potential heat reservoir in the Rongcheng geothermal field. 展开更多
关键词 geothermal resource CARBONATE reservoir fracture FMI log in-situ stress
下载PDF
Numerical Fluid Flow Modelling in Multiple Fractured Porous Reservoirs 被引量:6
5
作者 Yatin Suri Sheikh Zahidul Islam +4 位作者 Kirsten Stephen Cameron Donald Michael Thompson Mohamad Ghazi Droubi Mamdud Hossain 《Fluid Dynamics & Materials Processing》 EI 2020年第2期245-266,共22页
This paper compares the fluid flow phenomena occurring within a fractured reservoir for three different fracture models using computational fluid dynamics.The effect of the fracture-matrix interface condition is studi... This paper compares the fluid flow phenomena occurring within a fractured reservoir for three different fracture models using computational fluid dynamics.The effect of the fracture-matrix interface condition is studied on the pressure and velocity distribution.The fracture models were compared based on the variation in pressure and permeability conditions.The model was developed for isotropic and anisotropic permeability conditions.The results suggest that the fracture aperture can have a drastic effect on fluid flow.The porous fracture-matrix interface condition produces more realistic transport of fluids.By increasing the permeability in the isotropic porous matrix,the pressure drop was significantly higher in both the fracture and reservoir region.Under anisotropic conditions in the 3D fractured reservoir,the effect of the higher longitudinal permeability was found to lower the pressure in the fractured reservoir.Depending on the properties of the fractured reservoir,this study can enhance the understanding of fracture-matrix fluid interaction and provide a method for production optimisation. 展开更多
关键词 Parallel plate fractured porous reservoir porous interface ANISOTROPY
下载PDF
Numerical simulation of high-resolution azimuthal resistivity laterolog response in fractured reservoirs 被引量:2
6
作者 Shao-Gui Deng Li Li +2 位作者 Zhi-Qiang Li Xu-Quan He Yi-Ren Fan 《Petroleum Science》 SCIE CAS CSCD 2015年第2期252-263,共12页
The high-resolution azimuthal resistivity laterolog response in a fractured formation was numerically simulated using a three-dimensional finite element method. Simulation results show that the azimuthal resistivity i... The high-resolution azimuthal resistivity laterolog response in a fractured formation was numerically simulated using a three-dimensional finite element method. Simulation results show that the azimuthal resistivity is determined by fracture dipping as well as dipping direction, while the amplitude differences between deep and shallow laterolog resistivities are mainly controlled by the former. A linear relationship exists between the corrected apparent conductivities and fracture aperture. With the same fracture aperture, the deep and shallow laterolog resistivities present small values with negative separations for low-angle fractures, while azimuthal resistivities have large variations with positive separations for high-angle fractures that intersect the borehole. For dipping fractures, the variation of the azimuthal resistivity becomes larger when the fracture aperture increases. In addition, for high-angle fractures far from the borehole, a negative separation between the deep and shallow resistivities exists when fracture aperture is large as well as high resistivity contrast exists between bedrock and fracture fluid. The decreasing amplitude of dual laterolog resistivity can indicate the aperture of low-angle fractures, and the variation of the deep azimuthal resistivity can give information of the aperture of high-angle fractures and their position relative to the borehole. 展开更多
关键词 High-resolution azimuthal resistivitylaterolog fractured reservoir fracture dipping anglefracture aperture. fracture dipping direction
下载PDF
Structural failure mechanism and strengthening method of fracture plugging zone for lost circulation control in deep naturally fractured reservoirs 被引量:3
7
作者 XU Chengyuan YAN Xiaopeng +2 位作者 KANG Yili YOU Lijun ZHANG Jingyi 《Petroleum Exploration and Development》 2020年第2期430-440,共11页
Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failu... Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failure pattern of plugging zone is developed to reveal the plugging zone failure mechanisms in deep, high temperature, high pressure, and high in-situ stress environment. Based on the fracture plugging zone strength model, key performance parameters are determined for the optimal selection of loss control material(LCM). Laboratory fracture plugging experiments with new LCM are carried out to evaluate the effect of the key performance parameters of LCM on fracture plugging quality. LCM selection strategy for fractured reservoirs is developed. The results show that the force chain formed by LCMs determines the pressure stabilization of macro-scale fracture plugging zone. Friction failure and shear failure are the two major failure patterns of fracture plugging zone. The strength of force chain depends on the performance of micro-scale LCM, and the LCM key performance parameters include particle size distribution, fiber aspect ratio, friction coefficient, compressive strength, soluble ability and high temperature resistance. Results of lab experiments and field test show that lost circulation control quality can be effectively improved with the optimal material selection based on the extracted key performance parameters of LCMs. 展开更多
关键词 deep layer fractured reservoir lost circulation fracture plugging zone multi-scale structure strength and stability loss control material
下载PDF
Data-Driven Model Falsification and Uncertainty Quantification for Fractured Reservoirs 被引量:1
8
作者 Junling Fang Bin Gong Jef Caers 《Engineering》 SCIE EI CAS 2022年第11期116-128,共13页
Many properties of natural fractures are uncertain,such as their spatial distribution,petrophysical properties,and fluid flow performance.Bayesian theorem provides a framework to quantify the uncertainty in geological... Many properties of natural fractures are uncertain,such as their spatial distribution,petrophysical properties,and fluid flow performance.Bayesian theorem provides a framework to quantify the uncertainty in geological modeling and flow simulation,and hence to support reservoir performance predictions.The application of Bayesian methods to fractured reservoirs has mostly been limited to synthetic cases.In field applications,however,one of the main problems is that the Bayesian prior is falsified,because it fails to predict past reservoir production data.In this paper,we show how a global sensitivity analysis(GSA)can be used to identify why the prior is falsified.We then employ an approximate Bayesian computation(ABC)method combined with a tree-based surrogate model to match the production history.We apply these two approaches to a complex fractured oil and gas reservoir where all uncertainties are jointly considered,including the petrophysical properties,rock physics properties,fluid properties,discrete fracture parameters,and dynamics of pressure and transmissibility.We successfully identify several reasons for the falsification.The results show that the methods we propose are effective in quantifying uncertainty in the modeling and flow simulation of a fractured reservoir.The uncertainties of key parameters,such as fracture aperture and fault conductivity,are reduced. 展开更多
关键词 Bayesian evidential learning FALSIFICATION fractured reservoir Random forest Approximate Bayesian computation
下载PDF
A Numerical Modelling Method of Fractured Reservoirs with Embedded Meshes and Topological Fracture Projection Configurations 被引量:1
9
作者 Xiang Rao Yina Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第6期1403-1429,共27页
Projection-based embedded discrete fracture model(pEDFM)is an effective numerical model to handle the flow in fractured reservoirs,with high efficiency and strong generalization of flow models.However,this paper point... Projection-based embedded discrete fracture model(pEDFM)is an effective numerical model to handle the flow in fractured reservoirs,with high efficiency and strong generalization of flow models.However,this paper points out that pEDFM fails to handle flow barriers in most cases,and identifies the physical projection configuration of fractures is a key step in pEDFM.This paper presents and proves the equivalence theorem,which explains the geometric nature of physical projection configurations of fractures,that is,the projection configuration of a fracture being physical is equivalent to it being topologically homeomorphic to the fracture,by analyzing the essence of pEDFM.Physical projection configurations of fractures may be rigorously established based on this theorem,allowing pEDFM to obtain physical numerical results for many flow models,particularly those with flow barriers.Furthermore,a natural idea emerges of employing flow barriers to flexibly‘cut’the formation to quickly handle the flow problems in the formation with complex geological conditions,and several numerical examples are implemented to test this idea and application of the improved pEDFM. 展开更多
关键词 Numerical modeling method fractured reservoirs fracture-projection configuration flow barriers topologically homeomorphism
下载PDF
Water coning mechanism in Tarim fractured sandstone gas reservoirs 被引量:1
10
作者 沈伟军 刘晓华 +1 位作者 李熙喆 陆家亮 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期344-349,共6页
The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomen... The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomenon caused by the imbalance between gravity and viscous forces around the completion interval. There are several controllable and uncontrollable parameters influencing this problem. In order to simulate the key parameters affecting the water coning phenomenon, a model was developed to represent a single well with an underlying aquifer using the fractured sandstone gas reservoir data of the A-Well in Dina gas fields.The parametric study was performed by varying six properties individually over a representative range. The results show that matrix permeability, well penetration(especially fracture permeability), vertical-to-horizontal permeability ratio, aquifer size and gas production rate have considerable effect on water coning in the fractured gas reservoirs. Thus, investigation of the effective parameters is necessary to understand the mechanism of water coning phenomenon. Simulation of the problem helps to optimize the conditions in which the breakthrough of water coning is delayed. 展开更多
关键词 water coning fractured gas reservoir water cut recovery factor
下载PDF
A Method for Identifying Channeling Paths in Low-Permeability Fractured Reservoirs
11
作者 Zhenfeng Zhao Bin Li +6 位作者 Zubo Su Lijing Chang Hongzheng Zhu Ming Liu Jialing Ma Fan Wang Qianwan Li 《Fluid Dynamics & Materials Processing》 EI 2022年第6期1781-1794,共14页
Often oilfield fractured horizontal wells produce water flowing in multiple directions.In this study,a method to identify such channeling paths is developed.The dual-medium model is based on the principle of inter-wel... Often oilfield fractured horizontal wells produce water flowing in multiple directions.In this study,a method to identify such channeling paths is developed.The dual-medium model is based on the principle of inter-well connectivity and considers the flow characteristics and related channeling terms.The Lorentz curve is drawn to qualitatively discern the geological type of the low-permeability fractured reservoir and determine the channeling direction and size.The practical application of such an approach to a sample oilfield shows that it can accurately identify the channeling paths of the considered low-permeability fractured reservoir and predict production performances according to the inter-well connectivity model.As a result,early detection of water channeling becomes possible,paving the way to real-time production system optimization in low-permeability fractured reservoirs. 展开更多
关键词 Low-permeability fractured reservoir fracturing horizontal well interwell connectivity dual media channeling paths
下载PDF
Experiments on imbibition mechanisms of fractured reservoirs by microfluidic chips
12
作者 YU Fuwei GAO Zhendong +5 位作者 ZHU Wenhao WANG Chuan LIU Fan XU Fei JIANG Hanqiao LI Junjian 《Petroleum Exploration and Development》 CSCD 2021年第5期1162-1172,共11页
To solve the problems of long experiment period and difficult measurement in core imbibition experiments,fracture-matrix microfluidic chips of different sizes,boundary conditions and wettability regulated by surface p... To solve the problems of long experiment period and difficult measurement in core imbibition experiments,fracture-matrix microfluidic chips of different sizes,boundary conditions and wettability regulated by surface property modification were designed to research the imbibition mechanisms of oil-water,oil-surfactant solution and oil-WinsorⅢtype surfactant solution.In the oil-water,and oil-wettability modification system imbibition process,oil was replaced from the matrix through Haines jump,the capillary back pressure was the main resistance blocking the flow of oil,the reduction of interfacial tension caused the weakening of Haines jump,reduction of oil discharge rate,and increase of oil recovery.The imbibition of oil-water or oil-surfactant solution with low interfacial tension was a counter-current imbibition process dominated by capillary force,in which all boundaries had similar contribution to imbibition,and the recovery data obtained from this experiment fit well with the classic imbibition scaling equation.The imbibition of oil and Winsor III type surfactant solution was a co-current imbibition process dominated by gravity under super-low interfacial tension,and is essentially the formation and re-balance of neutral microemulsion.The imbibition dynamics obtained from this experiment fit well with the modified imbibition scaling equation. 展开更多
关键词 fractured reservoirs imbibition mechanism microfluidic chip MICROEMULSION
下载PDF
A Review of the Dynamic Modeling Approaches for Characterizing Fluid Flow in Naturally Fractured Reservoirs
13
作者 M.N.Tarhuni W.R.Sulaiman +2 位作者 M.Z.Jaafar M.Milad A.M.Alghol 《Energy Engineering》 EI 2021年第4期761-795,共35页
Fluid flow in fractured media has been studied for decades and received considerable attention in the oil and gas industry because of the high productivity of naturally fractured reservoirs.Due to formation complexity... Fluid flow in fractured media has been studied for decades and received considerable attention in the oil and gas industry because of the high productivity of naturally fractured reservoirs.Due to formation complexity and reservoir heterogeneity,characterizing fluid flow with an appropriate reservoir model presents a challenging task that differs relatively from homogeneous conventional reservoirs in many aspects of view,including geological,petrophysical,production,and economics.In most fractured reservoirs,fracture networks create complex pathways that affect hydrocarbon flow,well performance,hence reservoir characterization.A better and comprehensive understanding of the available reservoir modeling approaches is much needed to accurately characterize fluid flow behavior in NFRs.Therefore,in this paper,a perspective review of the available modeling approaches was presented for fluid flow characterization in naturally fractured medium.Modeling methods were evaluated in terms of their description,application,advantages,and disadvantages.This study has also included the applications of these reservoir models in fluid flow characterizing studies and governing equations for fluid flow.Dual continuum models were proved to be better than single continuum models in the presence of large scale fractures.In comparison,discrete models were more appropriate for reservoirs that contain a smaller number of fractures.However,hybrid modeling was the best method to provide accurate and scalable fluid flow modeling.It is our understanding that this paper will bridge the gap between the fundamental understanding and application of NFRs modeling approaches and serve as a useful reference for engineers and researchers for present and future applications. 展开更多
关键词 Naturally fractured reservoirs simulation techniques fluid flow modeling HETEROGENEITY dual continuum modeling discrete fracture network modeling
下载PDF
Prediction of oil recovery in naturally fractured reservoirs subjected to reinfiltration during gravity drainage using a new scaling equation
14
作者 AGHABARARI Amirhossein GHAEDI Mojtaba RIAZI Masoud 《Petroleum Exploration and Development》 2020年第6期1307-1315,共9页
By comparing numerical simulation results of single-porosity and dual-porosity models,the significant effect of reinfiltration to naturally fractured reservoirs was confirmed.A new governing equation was proposed for ... By comparing numerical simulation results of single-porosity and dual-porosity models,the significant effect of reinfiltration to naturally fractured reservoirs was confirmed.A new governing equation was proposed for oil drainage in a matrix block under the reinfiltration process.Utilizing inspectional analysis,a dimensionless equation suitable for scaling of recovery curves for matrix blocks under reinfiltration has been obtained.By the design of experiments,test cases with different rock and fluid properties were defined to confirm the scope of the presented equation.The defined cases were simulated using a realistic numerical simulation approach.This method can estimate the oil amount getting into the matrix block through reinfiltration,help simulate the oil drainage process in naturally fractured reservoirs accurately,and predict the recovery rate of matrix block in the early to middle periods of production.Using the defined scaling equation in the dual-porosity model can improve the accuracy of the predicted recovery rate. 展开更多
关键词 naturally fractured reservoir gravity drainage reinfiltration scaling equation dual-porosity simulation inspectional analysis
下载PDF
Characteristics of proppant transport and placement within rough hydraulic fractures
15
作者 HUANG Hai ZHENG Yong +5 位作者 WANG Yi WANG Haizhu NI Jun WANG Bin YANG Bing ZHANG Wentong 《Petroleum Exploration and Development》 SCIE 2024年第2期453-463,共11页
A three-dimensional reconstruction of rough fracture surfaces of hydraulically fractured rock outcrops is carried out by casting process,a large-scale experimental setup for visualizing rough fractures is built to per... A three-dimensional reconstruction of rough fracture surfaces of hydraulically fractured rock outcrops is carried out by casting process,a large-scale experimental setup for visualizing rough fractures is built to perform proppant transport experiments.The typical characteristics of proppant transport and placement in rough fractures and its intrinsic mechanisms are investigated,and the influences of fracture inclination,fracture width and fracturing fluid viscosity on proppant transport and placement in rough fractures are analyzed.The results show that the rough fractures cause variations in the shape of the flow channel and the fluid flow pattern,resulting in the bridging buildup during proppant transport to form unfilled zone,the emergence of multiple complex flow patterns such as channeling,reverse flow and bypassing of sand-carrying fluid,and the influence on the stability of the sand dune.The proppant has a higher placement rate in inclined rough fractures,with a maximum increase of 22.16 percentage points in the experiments compared to vertical fractures,but exhibits poor stability of the sand dune.Reduced fracture width aggravates the bridging of proppant and induces higher pumping pressure.Increasing the viscosity of the fracturing fluid can weaken the proppant bridging phenomenon caused by the rough fractures. 展开更多
关键词 reservoir fracturing rough fracture PROPPANT transport and placement characteristics bridging buildup
下载PDF
Fluid identification based on frequency-dependent AVO attribute inversion in multi-scale fracture media
16
作者 刘财 李博南 +2 位作者 赵旭 刘洋 鹿琪 《Applied Geophysics》 SCIE CSCD 2014年第4期384-394,508,509,共13页
A key problem in seismic inversion is the identification of the reservoir fluids. Elastic parameters, such as seismic wave velocity and formation density, do not have sufficient sensitivity, thus, the conventional amp... A key problem in seismic inversion is the identification of the reservoir fluids. Elastic parameters, such as seismic wave velocity and formation density, do not have sufficient sensitivity, thus, the conventional amplitude-versus-offset(AVO) method is not applicable. The frequency-dependent AVO method considers the dependency of the seismic amplitude to frequency and uses this dependency to obtain information regarding the fluids in the reservoir fractures. We propose an improved Bayesian inversion method based on the parameterization of the Chapman model. The proposed method is based on 1) inelastic attribute inversion by the FDAVO method and 2) Bayesian statistics for fluid identification. First, we invert the inelastic fracture parameters by formulating an error function, which is used to match observations and model data. Second, we identify fluid types by using a Markov random field a priori model considering data from various sources, such as prestack inversion and well logs. We consider the inelastic parameters to take advantage of the viscosity differences among the different fluids possible. Finally, we use the maximum posteriori probability for obtaining the best lithology/fluid identification results. 展开更多
关键词 fractured reservoirs fluid identification reservoir fluids frequency-dependent AVO method Bayesian statistics
下载PDF
An experimental study of fracture initiation mechanisms during hydraulic fracturing 被引量:14
17
作者 Yan Tie Li Wei Bi Xueliang 《Petroleum Science》 SCIE CAS CSCD 2011年第1期87-92,共6页
The mechanism of fracture initiation is the basic issue for hydraulic fracture technology. Because of the huge differences in fracture initiation mechanisms for different reservoirs,some successful fracturing techniqu... The mechanism of fracture initiation is the basic issue for hydraulic fracture technology. Because of the huge differences in fracture initiation mechanisms for different reservoirs,some successful fracturing techniques applied to porosity reservoirs are ineffectual for fractured reservoirs.Laboratory tests using a process simulation device were performed to confirm the characteristics of fracture initiation and propagation in different reservoirs.The influences of crustal stress field,confining pressure,and natural fractures on the fracture initiation and propagation are discussed.Experimental results demonstrate that stress concentration around the hole would significantly increase the fracture pressure of the rock.At the same time,natural fractures in the borehole wall would eliminate the stress concentration,which leads to a decrease in the fracture initiation pressure. 展开更多
关键词 Hydraulic fracturing porosity reservoir fractured reservoir fracture initiation fracture propagation simulation experiment
下载PDF
Numerical simulation of two-phase flow in fractured porous media using streamline simulation and IMPES methods and comparing results with a commercial software 被引量:7
18
作者 Mahmoud Ahmadpour Majid Siavashi Mohammad Hossein Doranehgard 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2630-2637,共8页
Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consum... Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consuming. In streamline method, transport equations are solved on one-dimensional streamlines to reduce the computation time with less memory for simulation. First, pressure equation is solved on an Eulerian grid and streamlines are traced. Defining the "time of flight", saturation equations are mapped and solved on streamlines. Finally, the results are mapped back on Eulerian grid and the process is repeated until the simulation end time. The waterflooding process is considered in a fractured reservoir using the dual porosity model. Afterwards, a computational code is developed to solve the same problem by the IMPES method and the results of streamline simulation are compared to those of the IMPES and a commercial software. Finally, the accuracy and efficiency of streamline simulator for simulation of two-phase flow in fractured reservoirs has been proved. 展开更多
关键词 two-phase flow porous media fractured reservoirs streamline simulation dual porosity implicit pressure-explicit saturation
下载PDF
Fractured reservoir modeling by discrete fracture network and seismic modeling in the Tarim Basin,China 被引量:4
19
作者 Sam Zandong Sun Zhou Xinyuan +3 位作者 Yang Haijun Wang Yueying WangDi Liu Zhishui 《Petroleum Science》 SCIE CAS CSCD 2011年第4期433-445,共13页
Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the con... Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the conventional AVO inversion method based on HTI theory to predict fracture development will result in some errors.Thus,an integrated research concept for fractured reservoir prediction is put forward in this paper.Seismic modeling plays a bridging role in this concept,and the establishment of an anisotropic fracture model by Discrete Fracture Network (DFN) is the key part.Because the fracture system in the Tarim Basin shows complex anisotropic characteristics,it is vital to build an effective anisotropic model.Based on geological,well logging and seismic data,an effective anisotropic model of complex fracture systems can be set up with the DFN method.The effective elastic coefficients,and the input data for seismic modeling can be calculated.Then seismic modeling based on this model is performed,and the seismic response characteristics are analyzed.The modeling results can be used in the following AVO inversion for fracture detection. 展开更多
关键词 fractured reservoir Discrete fracture Network (DFN) equivalent medium seismic modeling azimuth-angle gathers
下载PDF
Automatic fracture–vug identification and extraction from electric imaging logging data based on path morphology 被引量:7
20
作者 Xi-Ning Li Jin-Song Shen +1 位作者 Wu-Yang Yang Zhen-Ling Li 《Petroleum Science》 SCIE CAS CSCD 2019年第1期58-76,共19页
We present a path morphology method to separate total rock pore space into matrix, fractures and vugs and derive their pore structure spectrum. Thus, we can achieve fine pore evaluation in fracture–vug reservoirs bas... We present a path morphology method to separate total rock pore space into matrix, fractures and vugs and derive their pore structure spectrum. Thus, we can achieve fine pore evaluation in fracture–vug reservoirs based on electric imaging logging data. We automatically identify and extract fracture–vug information from the electric imaging images by adopting a path morphological operator that remains flexible enough to fit rectilinear and slightly curved structures because they are independent of the structuring element shape. The Otsu method was used to extract fracture–vug information from the background noise caused by the matrix. To accommodate the differences in scale and form of the different target regions,including fracture and vug path, operators with different lengths were selected for their recognition and extraction at the corresponding scale. Polynomial and elliptic functions are used to fit the extracted fractures and vugs, respectively, and the fracture–vug parameters are deduced from the fitted edge. Finally, test examples of numerical simulation data and several measured well data have been provided for the verification of the effectiveness and adaptability of the path morphology method in the application of electric imaging logging data processing. This also provides algorithm support for the fine evaluation of fracture–vug reservoirs. 展开更多
关键词 Path morphology Image automatic identification Electric imaging logging fracture–vug reservoir
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部