期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental study of coal flow characteristics under mining disturbance in China
1
作者 Lei Zhang Zihao Kan +1 位作者 Cun Zhang Jun Tang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第5期32-47,共16页
With annually increased coal mining depth,gas extraction becomes more and more problematic.The gas extraction efect depends on coal seam permeability,which,in turn,is afected by many factors,including loading and unlo... With annually increased coal mining depth,gas extraction becomes more and more problematic.The gas extraction efect depends on coal seam permeability,which,in turn,is afected by many factors,including loading and unloading stresses and strains in the coal seam.Stresses induce internal cracks,resulting in cleats and gas emission channels,the coal seam permeability permanently changes accordingly.To clarify the stress-induced efects on coal seam permeability,this survey summarized the available approaches used to link the stress path and seepage law in the coal body seepage law,which can be classifed into two design methods:single load variation and combined feld mining method.The characterization methods used to observe the surface of coal samples and three-dimensional reconstruction include electron microscopy,CT scanning,and Nuclear Magnetic Resonance(NMR).According to the stress paths designed by the above two approaches,the seepage laws and similarities of three kinds of coal samples with the fractured structure were summarized in this paper.The following directions are recommended to study the seepage law of coal bodies with three kinds of fractured structures under stress.Firstly,the stress path of the experimental coal body should be designed by the combined feld mining method.The stressed environment of a deep coal seam is complicated,and the axial and confning pressures change simultaneously.Therefore,one cannot fully refect the real situation on-site by studying permeability evolution alone.Secondly,during the coal seam mining,the stressed state changes from time to time,and the development of coal seam fractures is afected by mining.When studying the stress efect on seepage of coal samples,the fractured structure of coal samples should be considered.Finally,the available structural characterization methods of coal samples can be combined with the 3D printing technology,which would produce artifcial samples with the fractured structure characteristics of natural coal. 展开更多
关键词 Stress loading and unloading Structural characterization PERMEABILITY fracture structure Broken coal
下载PDF
Evolution of the deeply buried Jurassic reservoirs in the southern Junggar Basin, NW China: Evidences from the Well DS-1
2
作者 Hanwen Hu Jian Zhang +3 位作者 Xiaoru Tian Qingong Zhuo Chengzao Jia Zhaojie Guo 《Petroleum Research》 2017年第3期247-263,共17页
The southern Junggar Basin has enormous hydrocarbon mainly from the Jurassic and Permian source rocks,which indicated the importance of exploration of the deeply buried Jurassic reservoirs,therefore,the study of the d... The southern Junggar Basin has enormous hydrocarbon mainly from the Jurassic and Permian source rocks,which indicated the importance of exploration of the deeply buried Jurassic reservoirs,therefore,the study of the deeply buried Upper Jurassic Qigu Formation(J_(3)q)reservoirs in Well DS-1 in the Dushanzi anticline was carried out through microscopic observation and measurement,nuclear magnetic resonance(NMR),scanning electron microscopy(SEM)and high pressure mercury injection.Results showed that the main reservoir storage spaces in the deeply buried Upper Jurassic Qigu Formation reservoirs were fractures and dissolved pores.The J_(3)q reservoirs with low porosity and permeability values of 0e12%and(0e5)×10^(-3)mm^(2) respectively,were generally tight.According to the mercury injection data,heterogeneity existed in the deeply buried Qigu Formation reservoirs with inhomogeneous pores and changeable sizes of pores throats.Pores and pore throats in the silt-fine sandstones of the lower Qigu Formation(J_(3)q^(1))were more big and wide respectively than that in the argillaceous siltstones of the upper Qigu Formation(J_(3)q^(3)).Reservoirs in J_(3)q^(1) had more mobile fluid and better conductivities than reservoirs in J_(3)q^(3).The strong compaction and multistage diagenesis resulted in the tight J_(3)q reservoirs.Anhydrite and quartz cementation,and various authigenetic minerals(e.g.hematite,kaolinite,illite/smectite formation,illite,chlorite and zeolite)filled in the pores.The homogenization temperature of brine inclusions(63.1e161.7℃)in quartz overgrowth indicated the quartz had grown since the late Eocene.Due to the Tian Shan reactivity in the Late Cenozoic,the structure fractures were developed and promoted dissolution by oil and formation water in the reservoirs of J3q1. 展开更多
关键词 Tight reservoirs evolution Heterogeneity Fluid inclusion structure fractures Qigu Formation The Dushanzi anticline Southern Junggar Basin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部