期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Mechanical properties and fracture surface roughness of thermally damaged granite under dynamic splitting
1
作者 Yijin Qian Peng Jia +1 位作者 Songze Mao Jialiang Lu 《Deep Underground Science and Engineering》 2024年第1期103-116,共14页
In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samp... In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samples after thermal treatment at 25,200,400,and 600℃.Results show that the dynamic peak splitting strength of thermally damaged granite samples increases with increasing strain rate,showing obvious strain‐rate sensitivity.With increasing temperature,thermally induced cracks in granite transform from intergranular cracks to intragranular cracks,and to a transgranular crack network.Thermally induced damages reduce the dynamic peak splitting strength and the maximum absorbed energy while increasing the peak radial strain.The fracture mode of the thermally damaged granite under dynamic loads is mode Ⅱ splitting failure.By using the axial roughness index Z2 a,the distribution ranges of the wedge‐shaped failure zones and the tensile failure zones in the fracture surfaces under dynamic Brazilian splitting can be effectively identified.The radial roughness index Z_(2)^(r)is sensitive to the strain rate and temperature.It shows a linear correlation with the peak splitting strength and the maximum absorbed energy and a linear negative correlation with the peak radial strain.Z_(2)^(r)can be used to quantitatively estimate the dynamic parameters based on the models proposed. 展开更多
关键词 dynamic splitting fracture surface roughness GRANITE strain rate thermal treatment
下载PDF
Shear sliding of rough-walled fracture surfaces under unloading normal stress 被引量:3
2
作者 Qian Yin Chun Zhu +5 位作者 Jiangyu Wu Hai Pu Qi Wang Yuanchao Zhang Hongwen Jing Tianci Deng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2658-2675,共18页
Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted r... Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted regarding various initial normal stresses(1e7 MPa)and numbers of shearing cycles(1 e5).The peak shear stress of fractures decreased with shear cycles due to progressively smooth surface morphologies,while increased with both JRC and initial normal stress and could be verified using the nonlinear Barton-Bandis failure criterion.The joint friction angle of fractures exponentially increased by 62.22%e64.87%with JRC while decreased by 22.1%e24.85%with shearing cycles.After unloading normal stress,the sliding initiation time of fractures increased with both JRC and initial normal stress due to more tortuous fracture morphologies and enhanced shearing resistance capacity.The surface resistance index(SRI)of fractures decreased by 4.35%e32.02%with increasing shearing cycles due to a more significant reduction of sliding initiation shear stress than that for sliding initiation normal stress,but increased by a factor of 0.41e1.64 with JRC.After sliding initiation,the shear displacement of fractures showed an increase in power function.By defining a sliding rate threshold of 5105 m/s,transition from“quasi-static”to“dynamic”sliding of fractures was identified,and the increase of sliding acceleration steepened with JRC while slowed down with shearing cycles.The normal displacement experienced a slight increase before shear sliding due to deformation recovery as the unloading stress was unloaded,and then enhanced shear dilation after sliding initiation due to climbing effects of surface asperities.Dilation was positively related to the shear sliding velocity of fractures.Wear characteristics of the fracture surfaces after shearing failure were evaluated using binary calculation,indicating an increasing shear area ratio by 45.24%e91.02%with normal stress. 展开更多
关键词 Unloading normal stress Rough fracture surface Shear sliding Normal displacement Shear wear characteristics
下载PDF
Meso-mechanical anisotropy and fracture evolution of reef limestones from the Maldives Islands and the South China Sea 被引量:1
3
作者 Lihui Li Chenglong Li +3 位作者 Beixiu Huang Jianguang Li Shouding Li Xiao Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3173-3187,共15页
Reef limestone is a biogenic sedimentary rock widely distributed in coral reef areas, acting as an important foundation for coast construction. Due to its special biogenic origin, reef limestone is different from conv... Reef limestone is a biogenic sedimentary rock widely distributed in coral reef areas, acting as an important foundation for coast construction. Due to its special biogenic origin, reef limestone is different from conventional rocks both in terms of rock structure and mechanical properties. In this study, mesoscale uniaxial compression experiments with five different loading directions were conducted on two kinds of reef limestones from the Maldives Islands and the South China Sea, respectively. The real-time high-resolution videos and images of failure processes were recorded simultaneously to investigate the fracture evolution and fracture surface roughness of reef limestones. It demonstrated that the reef limestones belonged to extremely soft to soft rocks, and their uniaxial compressive strength (UCS) values fluctuated with high discreteness. The mesoscale mechanical properties of reef limestones were highly anisotropic and mainly controlled by pore structure. The occurrence of dissolution pores in reef limestone tended to intensify mechanical anisotropy. With the integration of the fracture initiation and propagation features of reef limestones, it is supposed that the intrinsic mechanism of anisotropy was probably attributed to the differences in coral growth direction and dissolution. Furthermore, the quantified fracture surface roughness was revealed to have a good consistency with density and UCS for the reef limestones from the South China Sea. The findings are helpful for providing theoretical and experimental references for engineering construction in coral reef areas. 展开更多
关键词 Reef limestone Mechanical anisotropy Failure mode Pore structure fracture surface roughness
下载PDF
Shear testing on rock tunnel models under constant normal stress conditions 被引量:2
4
作者 Bing Yang Quan Jiang +2 位作者 Xiating Feng Jie Xin Dingping Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1722-1736,共15页
Large shear deformation problems are frequently encountered in geotechnical engineering.To expose the shear failure mechanism of rock tunnels,compression-shear tests for rock models with circular tunnel were carried o... Large shear deformation problems are frequently encountered in geotechnical engineering.To expose the shear failure mechanism of rock tunnels,compression-shear tests for rock models with circular tunnel were carried out,including single tunnel and adjacent double tunnels.The failure process is recorded by the external video and miniature cameras around the tunnel,accompanied by real-time acoustic emission monitoring.The experiments indicate that the shearing processes of rock tunnel can be divided into four steps:(i)cracks appeared around tunnels,(ii)shear cracks and spalling ejection developed,(iii)floor warping occurred,and(iv)shear cracks ran through the tunnel model.Besides,the roughness of the sheared fracture surface decreased with the increase in normal stress.Corresponding numerical simulation indicates that there are tensile stress concentrations and compressive stress concentrations around the tunnel during the shearing process,while the compressive stress concentration areas are under high risk of failure and the existence of adjacent tunnels will increase the degree of stress concentration. 展开更多
关键词 Circular tunnel model Compression-shear test SPALLING Numerical simulation fracture surface roughness
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部