In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samp...In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samples after thermal treatment at 25,200,400,and 600℃.Results show that the dynamic peak splitting strength of thermally damaged granite samples increases with increasing strain rate,showing obvious strain‐rate sensitivity.With increasing temperature,thermally induced cracks in granite transform from intergranular cracks to intragranular cracks,and to a transgranular crack network.Thermally induced damages reduce the dynamic peak splitting strength and the maximum absorbed energy while increasing the peak radial strain.The fracture mode of the thermally damaged granite under dynamic loads is mode Ⅱ splitting failure.By using the axial roughness index Z2 a,the distribution ranges of the wedge‐shaped failure zones and the tensile failure zones in the fracture surfaces under dynamic Brazilian splitting can be effectively identified.The radial roughness index Z_(2)^(r)is sensitive to the strain rate and temperature.It shows a linear correlation with the peak splitting strength and the maximum absorbed energy and a linear negative correlation with the peak radial strain.Z_(2)^(r)can be used to quantitatively estimate the dynamic parameters based on the models proposed.展开更多
Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted r...Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted regarding various initial normal stresses(1e7 MPa)and numbers of shearing cycles(1 e5).The peak shear stress of fractures decreased with shear cycles due to progressively smooth surface morphologies,while increased with both JRC and initial normal stress and could be verified using the nonlinear Barton-Bandis failure criterion.The joint friction angle of fractures exponentially increased by 62.22%e64.87%with JRC while decreased by 22.1%e24.85%with shearing cycles.After unloading normal stress,the sliding initiation time of fractures increased with both JRC and initial normal stress due to more tortuous fracture morphologies and enhanced shearing resistance capacity.The surface resistance index(SRI)of fractures decreased by 4.35%e32.02%with increasing shearing cycles due to a more significant reduction of sliding initiation shear stress than that for sliding initiation normal stress,but increased by a factor of 0.41e1.64 with JRC.After sliding initiation,the shear displacement of fractures showed an increase in power function.By defining a sliding rate threshold of 5105 m/s,transition from“quasi-static”to“dynamic”sliding of fractures was identified,and the increase of sliding acceleration steepened with JRC while slowed down with shearing cycles.The normal displacement experienced a slight increase before shear sliding due to deformation recovery as the unloading stress was unloaded,and then enhanced shear dilation after sliding initiation due to climbing effects of surface asperities.Dilation was positively related to the shear sliding velocity of fractures.Wear characteristics of the fracture surfaces after shearing failure were evaluated using binary calculation,indicating an increasing shear area ratio by 45.24%e91.02%with normal stress.展开更多
This study aims to propose an empirical prediction model of hydraulic aperture of 2D rough fractures through numerical simulations by considering the influences of fracture length,average mechanical aperture,minimum m...This study aims to propose an empirical prediction model of hydraulic aperture of 2D rough fractures through numerical simulations by considering the influences of fracture length,average mechanical aperture,minimum mechanical aperture,joint roughness coefficient(JRC)and hydraulic gradient.We generate 600 numerical models using successive random additions(SRA)algorithm and for each model,seven hydraulic gradients spanning from 2.5×10^(-7)to 1 are considered to fully cover both linear and nonlinear flow regimes.As a result,a total of 4200 fluid flow cases are simulated,which can provide sufficient data for the prediction of hydraulic aperture.The results show that as the ratio of average mechanical aperture to fracture length increases from 0.01 to 0.2,the hydraulic aperture increases following logarithm functions.As the hydraulic gradient increases from 2.5×10^(-7)to 1,the hydraulic aperture decreases following logarithm functions.When a relatively low hydraulic gradient(i.e.,5×10^(-7))is applied between the inlet and the outlet boundaries,the streamlines are of parallel distribution within the fractures.However,when a relatively large hydraulic gradient(i.e.,0.5)is applied between the inlet and the outlet boundaries,the streamlines are disturbed and a number of eddies are formed.The hydraulic aperture predicted using the proposed empirical functions agree well with the calculated results and is more reliable than those available in the preceding literature.In practice,the hydraulic aperture can be calculated as a first-order estimation using the proposed prediction model when the associated parameters are given.展开更多
Reef limestone is a biogenic sedimentary rock widely distributed in coral reef areas, acting as an important foundation for coast construction. Due to its special biogenic origin, reef limestone is different from conv...Reef limestone is a biogenic sedimentary rock widely distributed in coral reef areas, acting as an important foundation for coast construction. Due to its special biogenic origin, reef limestone is different from conventional rocks both in terms of rock structure and mechanical properties. In this study, mesoscale uniaxial compression experiments with five different loading directions were conducted on two kinds of reef limestones from the Maldives Islands and the South China Sea, respectively. The real-time high-resolution videos and images of failure processes were recorded simultaneously to investigate the fracture evolution and fracture surface roughness of reef limestones. It demonstrated that the reef limestones belonged to extremely soft to soft rocks, and their uniaxial compressive strength (UCS) values fluctuated with high discreteness. The mesoscale mechanical properties of reef limestones were highly anisotropic and mainly controlled by pore structure. The occurrence of dissolution pores in reef limestone tended to intensify mechanical anisotropy. With the integration of the fracture initiation and propagation features of reef limestones, it is supposed that the intrinsic mechanism of anisotropy was probably attributed to the differences in coral growth direction and dissolution. Furthermore, the quantified fracture surface roughness was revealed to have a good consistency with density and UCS for the reef limestones from the South China Sea. The findings are helpful for providing theoretical and experimental references for engineering construction in coral reef areas.展开更多
Large shear deformation problems are frequently encountered in geotechnical engineering.To expose the shear failure mechanism of rock tunnels,compression-shear tests for rock models with circular tunnel were carried o...Large shear deformation problems are frequently encountered in geotechnical engineering.To expose the shear failure mechanism of rock tunnels,compression-shear tests for rock models with circular tunnel were carried out,including single tunnel and adjacent double tunnels.The failure process is recorded by the external video and miniature cameras around the tunnel,accompanied by real-time acoustic emission monitoring.The experiments indicate that the shearing processes of rock tunnel can be divided into four steps:(i)cracks appeared around tunnels,(ii)shear cracks and spalling ejection developed,(iii)floor warping occurred,and(iv)shear cracks ran through the tunnel model.Besides,the roughness of the sheared fracture surface decreased with the increase in normal stress.Corresponding numerical simulation indicates that there are tensile stress concentrations and compressive stress concentrations around the tunnel during the shearing process,while the compressive stress concentration areas are under high risk of failure and the existence of adjacent tunnels will increase the degree of stress concentration.展开更多
基金supported by the National Natural Science Foundation of China(52174071,U1903216,52004052)the National Key R&D Program of China(2022YFC2903903).
文摘In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samples after thermal treatment at 25,200,400,and 600℃.Results show that the dynamic peak splitting strength of thermally damaged granite samples increases with increasing strain rate,showing obvious strain‐rate sensitivity.With increasing temperature,thermally induced cracks in granite transform from intergranular cracks to intragranular cracks,and to a transgranular crack network.Thermally induced damages reduce the dynamic peak splitting strength and the maximum absorbed energy while increasing the peak radial strain.The fracture mode of the thermally damaged granite under dynamic loads is mode Ⅱ splitting failure.By using the axial roughness index Z2 a,the distribution ranges of the wedge‐shaped failure zones and the tensile failure zones in the fracture surfaces under dynamic Brazilian splitting can be effectively identified.The radial roughness index Z_(2)^(r)is sensitive to the strain rate and temperature.It shows a linear correlation with the peak splitting strength and the maximum absorbed energy and a linear negative correlation with the peak radial strain.Z_(2)^(r)can be used to quantitatively estimate the dynamic parameters based on the models proposed.
基金support from the National Natural Science Foundation of China(Grant Nos.52174092 and 52104125)the Fundamental Research Funds for the Central Universities,China(Grant No.2022YCPY0202)is gratefully acknowledged.
文摘Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted regarding various initial normal stresses(1e7 MPa)and numbers of shearing cycles(1 e5).The peak shear stress of fractures decreased with shear cycles due to progressively smooth surface morphologies,while increased with both JRC and initial normal stress and could be verified using the nonlinear Barton-Bandis failure criterion.The joint friction angle of fractures exponentially increased by 62.22%e64.87%with JRC while decreased by 22.1%e24.85%with shearing cycles.After unloading normal stress,the sliding initiation time of fractures increased with both JRC and initial normal stress due to more tortuous fracture morphologies and enhanced shearing resistance capacity.The surface resistance index(SRI)of fractures decreased by 4.35%e32.02%with increasing shearing cycles due to a more significant reduction of sliding initiation shear stress than that for sliding initiation normal stress,but increased by a factor of 0.41e1.64 with JRC.After sliding initiation,the shear displacement of fractures showed an increase in power function.By defining a sliding rate threshold of 5105 m/s,transition from“quasi-static”to“dynamic”sliding of fractures was identified,and the increase of sliding acceleration steepened with JRC while slowed down with shearing cycles.The normal displacement experienced a slight increase before shear sliding due to deformation recovery as the unloading stress was unloaded,and then enhanced shear dilation after sliding initiation due to climbing effects of surface asperities.Dilation was positively related to the shear sliding velocity of fractures.Wear characteristics of the fracture surfaces after shearing failure were evaluated using binary calculation,indicating an increasing shear area ratio by 45.24%e91.02%with normal stress.
基金funded by National Key R&D Program of China(No.2022YFE0128300)National Natural Science Foundation of China(Grant Nos.52379114 and 52379113)+2 种基金Natural Science Foundation of Jiangsu Province,China(No.BK20211584)the Assistance Program for Future Outstanding Talents of the China University of Mining and Technology(No.2023WLKXJ187)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_2746).
文摘This study aims to propose an empirical prediction model of hydraulic aperture of 2D rough fractures through numerical simulations by considering the influences of fracture length,average mechanical aperture,minimum mechanical aperture,joint roughness coefficient(JRC)and hydraulic gradient.We generate 600 numerical models using successive random additions(SRA)algorithm and for each model,seven hydraulic gradients spanning from 2.5×10^(-7)to 1 are considered to fully cover both linear and nonlinear flow regimes.As a result,a total of 4200 fluid flow cases are simulated,which can provide sufficient data for the prediction of hydraulic aperture.The results show that as the ratio of average mechanical aperture to fracture length increases from 0.01 to 0.2,the hydraulic aperture increases following logarithm functions.As the hydraulic gradient increases from 2.5×10^(-7)to 1,the hydraulic aperture decreases following logarithm functions.When a relatively low hydraulic gradient(i.e.,5×10^(-7))is applied between the inlet and the outlet boundaries,the streamlines are of parallel distribution within the fractures.However,when a relatively large hydraulic gradient(i.e.,0.5)is applied between the inlet and the outlet boundaries,the streamlines are disturbed and a number of eddies are formed.The hydraulic aperture predicted using the proposed empirical functions agree well with the calculated results and is more reliable than those available in the preceding literature.In practice,the hydraulic aperture can be calculated as a first-order estimation using the proposed prediction model when the associated parameters are given.
基金supported by the National Natural Science Foundation of China(Grant Nos.41977248 and 42207219)the Key Research Program of the Institute of Geology and Geophysics,Chinese Academy of Sciences(CAS)(Grant No.IGGCAS-201903).
文摘Reef limestone is a biogenic sedimentary rock widely distributed in coral reef areas, acting as an important foundation for coast construction. Due to its special biogenic origin, reef limestone is different from conventional rocks both in terms of rock structure and mechanical properties. In this study, mesoscale uniaxial compression experiments with five different loading directions were conducted on two kinds of reef limestones from the Maldives Islands and the South China Sea, respectively. The real-time high-resolution videos and images of failure processes were recorded simultaneously to investigate the fracture evolution and fracture surface roughness of reef limestones. It demonstrated that the reef limestones belonged to extremely soft to soft rocks, and their uniaxial compressive strength (UCS) values fluctuated with high discreteness. The mesoscale mechanical properties of reef limestones were highly anisotropic and mainly controlled by pore structure. The occurrence of dissolution pores in reef limestone tended to intensify mechanical anisotropy. With the integration of the fracture initiation and propagation features of reef limestones, it is supposed that the intrinsic mechanism of anisotropy was probably attributed to the differences in coral growth direction and dissolution. Furthermore, the quantified fracture surface roughness was revealed to have a good consistency with density and UCS for the reef limestones from the South China Sea. The findings are helpful for providing theoretical and experimental references for engineering construction in coral reef areas.
基金financial support from the National Natural Science Foundation of China(Grant Nos.U1965205 and 51779251)。
文摘Large shear deformation problems are frequently encountered in geotechnical engineering.To expose the shear failure mechanism of rock tunnels,compression-shear tests for rock models with circular tunnel were carried out,including single tunnel and adjacent double tunnels.The failure process is recorded by the external video and miniature cameras around the tunnel,accompanied by real-time acoustic emission monitoring.The experiments indicate that the shearing processes of rock tunnel can be divided into four steps:(i)cracks appeared around tunnels,(ii)shear cracks and spalling ejection developed,(iii)floor warping occurred,and(iv)shear cracks ran through the tunnel model.Besides,the roughness of the sheared fracture surface decreased with the increase in normal stress.Corresponding numerical simulation indicates that there are tensile stress concentrations and compressive stress concentrations around the tunnel during the shearing process,while the compressive stress concentration areas are under high risk of failure and the existence of adjacent tunnels will increase the degree of stress concentration.